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ABSTRACT

Regardless of the overwhelming use of next-generation sequencing technologies, microarray-

based genotyping combined with the imputation of untyped variants remains a cost-effective

means to interrogate genetic variations across the human genome. This technology is widely

used in genome-wide association studies (GWAS) at bio-bank scales, and more recently, in

polygenic score (PGS) analysis to predict and to stratify disease risk. Over the last decade, human

genotyping arrays have undergone a tremendous growth in both number, and content making a

comprehensive evaluation of their performances became more important. Here, we performed

a comprehensive performance assessment for 23 available human genotyping arrays in 6

ancestry groups using diverse public, and in-house datasets. The analyses focus on performance

estimation of derived imputation (in terms of accuracy and coverage) and PGS (in term of

concordance to PGS estimated from whole genome sequencing data) in three different traits and

diseases. We found that the arrays with a higher number of SNPs are not necessarily the ones with

higher imputation performance, but the arrays that are well-optimized for the targeted population

could provide very good imputation performance. In addition, PGS estimated by imputed SNP

array data is highly correlated to PGS estimated by whole genome sequencing data in most of

cases. When optimal arrays are used, the correlations of key PGS metrics between two types of

data can be higher than 0.97, but interestingly, arrays with high density can result in lower PGS

performance. Our results suggest the importance of properly selecting a suitable genotyping array

for PGS applications. Finally, we developed a web tool that provide interactive analyses of tag

SNP contents and imputation performance based on population and genomic regions of interest.

This study would act as a practical guide for researchers to design their genotyping arrays-based

studies. The tool is available at: https://genome.vinbigdata.org/tools/saa/
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1 INTRODUCTION

Over the last decade, low-cost, robust genotyping platforms and large-scale genome variation projects such

as the 1000 Genomes Project (Auton et al., 2015) have facilitated genome-wide association studies (GWAS)

on numerous human phenotypes, ranging from height to diseases (Bycroft et al., 2018). To date, thousands

of DNA loci that are significantly associated with complex traits and diseases have been discovered

(Buniello et al., 2019). Among numerous possible applications of GWAS results, disease risk prediction is

rapidly gaining broad interest recently (Torkamani et al., 2018; Lewis and Vassos, 2020; Lambert et al.,

2019). A polygenic score (PGS) or polygenic risk score (PRS) is an estimate of an individual’s genetic

liability to a trait or disease, calculated based on their genotype profile and relevant GWAS data (Choi et al.,

2020). In its most common form, a PGS is computed as the sum of allele count of risk alleles (0, 1, or 2) that

are weighted by its effect size (i.e. log odd ratio or beta coefficient) of hundreds-to-thousands of associated

SNPs. The outcome is a single score that aggregate each individual’s genetic loading proportional to the

risk of a given disease or a quantitative trait (Lambert et al., 2019). Although clinical utility of PGS has yet

to be established, recent works have suggested that PGS may be used for disease risk stratification that

potentially facilitates early disease detection, assists in diagnosis or informs treatment choices (Torkamani

et al., 2018; Lewis and Vassos, 2020). For example, PGS of coronary artery disease, type 2 diabetes, and

breast cancer at the top 8, 3.5, and 1.5% are risk equivalent to a monogenic mutation risk that confers an

odd ratio of 3 (Khera et al., 2018).

Similar to GWAS analysis, PGS can be derived from various types of genotyping data such as those

obtained by single-nucleotide polymorphism (SNP) microarrays or whole genome sequencing (WGS).

While WGS is attractive by the ability to interrogate variations across the entire human genome, SNP arrays

are the dominant assays to obtain genetic data for PGS calculation. They come up with several advantages

such as cost-effectiveness and light computational requirement which are preferable for population-sale

screening, where PGS would be most useful (Chen et al., 2020). Because the coverage of SNP arrays

is typically limited to lower than a million SNPs, a procedure involving haplotye phasing and genotype

imputing of missing sites is usually employed to add more genotyping information that can increase powers

of these genetic studies (Howie et al., 2012; Marchini and Howie, 2010; Choi et al., 2020). The imputation

performance is affected by three main factors, including algorithms of choice (Das et al., 2016), imputation

reference panels (Huang et al., 2015; McCarthy et al., 2016), and the SNP array designs (Nelson et al.,

2013).

In principle, genotyping SNP arrays are designed by selecting a set of SNPs, commonly reffered to as

“tag SNPs”, which maximize coverage of ungenotyped DNA variants through associations between these

alleles in the population (known as linkage disequilibrium, LD) (Gibbs et al., 2003; Carlson et al., 2004).
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Based on the target population, human genotyping SNP arrays can be classified into three categories that

optimized for global, super population or specific to targeted populations. In the early phase of development,

genotyping SNP arrays were focused on common genetic variations of the whole world population (minor

allele frequency, MAF, of 0.10 or greater) based on the HapMap catalog (Consortium et al., 2007). The

second generation of SNP arrays were designed to cover variants with MAF as low as 0.01 by providing

SNP arrays specifically for European, East Asian, African American, and Latino race/ethnicity populations

based on the 1000 Genomes Project (1KGP) catalog (Hoffmann et al., 2011a,b). However, the fact that the

majority of human genetic variants are rare and population-specific demands customizing SNP arrays to

improve over those designed for global or super populations (Consortium et al., 2015; Tam et al., 2019).

Indeed, population-specific genotyping arrays such as the UK Biobank Axiom Array (Bycroft et al., 2018),

the Axiom-NL Array (Ehli et al., 2017), the Japonica and Japonica NEO Arrays (Kawai et al., 2015;

Sakurai-Yageta et al., 2020), and the Axiom KoreanChip (Moon et al., 2019) have been developed on top

of the many existing commercial arrays. These arrays are not only optimized for genomic coverage based

on their unique variant catalogs, but also include a large amounts of functional variants. For example, the

Axiom KoreanChip contains more than 200,000 nonsynonymous loci and the new Japonica NEO Arrays is

designed with abundant disease risk variants (Moon et al., 2019; Sakurai-Yageta et al., 2020).

The development of customized arrays together with commercial arrays provided by genotyping platform

producers result in a large number of genotyping arrays. Each of these arrays has specific properties and

contents, and thus, there is an urgent demand for a systematic guideline to determine which array best

suits specific research questions and populations. Although there are SNP array comparative studies, they

are either not updated with the many recent arrays (Nelson et al., 2013; Ha et al., 2014), or limited in

only testing for a small set of populations, and some studies focused on LD coverage (Ha et al., 2014;

Verlouw et al., 2021) that may not be relevant to current imputation practice for use in association studies

and PGS analysis (Marchini and Howie, 2010; Choi et al., 2020). Moreover, although PGS is gaining

increasing attention, practical evaluation of performance for PGS applications by current genotyping arrays

is still lacking. Here, we provide a comprehensive evaluation of imputation-based genomic coverage

(Lindquist et al., 2013; Nelson et al., 2013) and PGS performance of 23 human genotyping arrays in

diverse populations. These analyses are intended to be a practical guide for researchers in selecting the

most suitable genotyping array for their genetic studies.
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2 MATERIALS AND METHODS

2.1 Genotyping arrays

In this study, we benchmarked 23 different human genotyping arrays including 14 arrays from Illumina

and 9 arrays from Affymetrix. The examined arrays contain the numbers of tag SNPs (array size) ranging

from approximately 300,000 (Infinium HumanCytoSNP-12 v2.1) up to more than 4,300,000 (Infinium

Omni5 v1.2). They can be classified as old arrays such as the Genome-Wide Human SNP Array 6.0;

population specific optimized arrays such as Axiom UK Biobank Array and Axiom Japonica Array NEO;

multiple population optimized arrays such as Infinium Multi-Ethnic Global v1.0 and Infinium Global

Diversity Array v1.0; cytogenetics and cancer applications optimized arrays such as Infinium CytoSNP-

850K v1.2. Recently developed arrays include Infinium Global Screening Array v3.0, Axiom Precision

Medicine Research Array, and Axiom Precision Medicine Diversity Array. Manifests of the 23 examined

arrays were obtained from respective manufacturers’ websites. Genomic positions were further harmonized

to the UCSC hg38 reference genome coordinate with CrossMap v0.2.6 for those require lifted over (Zhao

et al., 2014). Details and component statistics of these arrays are shown in Table 1.

2.2 Genomic datasets and pipelines

An overview of our evaluation pipeline is presented in Figure 1. In brief, the phased genomic data in

Variant Call Format (VCF) of 2,504 and 1,008 unrelated individuals from the 1000 Genomes Project

samples that were re-sequenced by New York Genome Center (1KGP) (Byrska-Bishop et al., 2021) and

the 1000 Vietnamese Genomes Project (1KVG) (Tran et al., 2022) were used to estimate imputation-

based coverage and PGS performance of 23 different genotyping arrays by the 10-fold cross-validation

Table 1. Details of 23 human genotyping arrays used in this study.
Array Short name No.Assays No.Positions No.Autosomal No.X No.y No.MT
Infinium HumanCytoSNP-12 v2.1 CytoSNP-12 293552 293467 276248 15082 1444 0
Infinium Core-24 v1.2 Infinium Core 304151 304111 293850 8097 2003 161
Infinium OncoArray-500K v1.0 Infinium OncoArray 497191 496203 481495 14276 312 120
Infinium PsychArray v1.3 PsychArray 592414 584233 567619 14221 2051 342
Axiom Genome-Wide ASI Axiom GW ASI 629494 629492 609774 17263 2222 233
Infinium Global Screening Array v3.0 Infinium GSA 654027 648380 616080 26635 3822 987
Axiom Genome-Wide CHB Axiom GW CHB 656638 656625 631283 24267 980 95
Axiom Japonica Array NEO Axiom JAPONICA 671123 666782 652237 13336 779 409
Axiom Genome-Wide EUR Axiom GW EUR 674287 673449 659956 13104 290 99
Infinium Chinese Genotyping Array v1.0 Infinium Chinese 695116 682199 647335 27668 6210 986
Infinium Japanese Screening Array v1.0 Infinium JSA 719938 707559 675012 26223 4686 948
Axiom UK Biobank Array Axiom UKB 843755 820407 798493 20827 813 274
Infinium CytoSNP-850K v1.2 CytoSNP-850K 845050 842682 811217 29666 1097 0
Axiom Precision Medicine Research Array Axiom PMRA 919099 900406 864096 36132 8 170
Axiom Precision Medicine Diversity Array Axiom PMDA 921664 900770 837511 62039 448 714
Genome-Wide Human SNP Array 6.0 Affymetrix 6.0 931991 929011 889847 37894 859 411
Infinium OmniZhongHua v1.4 OmniZhongHua 1170268 1165100 1134324 28444 2220 112
Infinium Multi-Ethnic EUR/EAS/SAS v1.0 Multi-Ethnic EUR EAS SAS 1471475 1471475 1429754 39479 1598 644
Infinium Multi-Ethnic Global v1.0 Multi-Ethnic Global 1748250 1733356 1673788 50914 3569 776
Infinium Global Diversity Array v1.0 Infinium GDA 1904599 1825277 1752897 60512 5744 1115
Axiom Genome-Wide PanAFR Axiom GW PanAFR 2264666 2264432 2195556 65949 2647 280
Infinium Omni2.5 v1.5 Infinium Omni2.5 2373357 2363610 2311073 50841 1515 181
Infinium Omni5 v1.2 Infinium Omni5 4327108 4245106 4131134 106418 2396 207
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Figure 1. Overview of evaluation pipeline. (i) Two input genetic datasets, including the 1KGP and 1KVG
were randomly divided into 10 batches that are equally distributed by populations. (ii) 10-fold cross-
validation procedure. In each turn, variants of 10% samples were extracted based on arrays’ manifest to
generate simulated array genotyping data (arrow a) as input for phasing and imputation with the remaining
90% samples used as the reference set to generate the imputed SNP array data (arrow b). (iii) SNP array
data after imputation. Imputed SNP array data of 10 batches were merged according to populations after
10-fold cross-validation, and were then benchmarked by treating the input WGS data as the golden standard.

approach. Specifically, genomic datasets were randomly divided into 10 batches (equally distributed across

populations in the 1KGP dataset). In each turn, one batch was used as the test set and the remaining

samples as the reference set. For each array, variants in the test set with the same position as variants

on the array were extracted with vcftools v0.1.17 (Danecek et al., 2011) and phasing information was

removed to generate the pseudo SNP array genotyped data, while variants in reference data were used

as the pre-phasing and imputation reference panel. The pre-phasing and imputation were performed

with SHAPEIT v4.1.3 (Delaneau et al., 2019) and Minimac4 v1.0.2 (Das et al., 2016) respectively.

Finally, the imputed genotyping data of 10 batches were combined to estimate imputation and PGS
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performance according to their populations, including 504, 503, 489, 661, 347, and 1,008 individuals in

East Asian (EAS), European (EUR), South Asian (SAS), African (AFR), American (AMR) and Vietnamese

(VNP) populations, respectively. This approach is similar to the strategy used previously to estimate

imputation-based genomic coverage (Lindquist et al., 2013; Nelson et al., 2013; Nguyen et al., 2021).

2.3 Imputation performance evaluation

Both GWAS and PGS often require genotype imputation that involves prediction of untyped variants in

the genome. While GWAS benefits from the boosting the number of imputed SNPs that can be tested for

association (Marchini and Howie, 2010), computation of PGS is conducted by summing the product of

risk allele count (0, 1, or 2) and its effect size derived from the GWAS. Thus, imputation performance is

expected to play a key role in PGS derivation. Here, we focus on imputation r2 metric although there are

several other criteria that can be used to assess imputation performance such as allele concordance (Nelson

et al., 2013), imputation quality (Verlouw et al., 2021), LD coverage (Barrett and Cardon, 2006). We

choose imputation r2 as the evaluation metric for following reasons. First, it is more relevant to the context

of GWAS and PGS analysis because the imputation r2 at a given variant is proportional to its χ2 statistic

that results from an association test (Pritchard and Przeworski, 2001; Chapman et al., 2003; Marchini,

2019; Li et al., 2021). This leads to the interpretation that an increase in mean imputation r2 at genome

wide scale directly corresponds to the increase of statistical power (Pritchard and Przeworski, 2001; Li

et al., 2021). Second, it is less sensitive to allele frequency than concordance (Nelson et al., 2013). Third, it

incorporates imputation uncertainty by using expected allele dosage rather than the most likely genotype

(Nelson et al., 2013). Finally, imputation r2 can be computed on a site-by-site basis, which enables more

detailed evaluation than at the allele frequency level (Li et al., 2021). In this evaluation setting, we treated

genotypes derived from WGS datasets as gold-standard. Imputation performance is measured as imputation

r2 that is SNP-wise squared Pearson’s correlation between the imputed dosages and the WGS genotypes,

and imputation coverage that is defined as proportion of SNPs with imputation r2 passing the cut-off of 0.8.

These metrics were stratified into three minor allele frequency (MAF) bins, including (0-0.01], (0.01-0.05],

(0.05-0.5]. To reduce the data noise, variants with allele count ¡ 2 are excluded in the bin of (0-0.01]. Of

note, the MAF bin of (0.01-0.5], which is the most common cutoff for GWAS and PGS analysis, was also

considered in the analysis (Marees et al., 2018; Choi et al., 2020).

2.4 PGS performance assessment

Instead of using pre-tuned PGS models as other studies (Li et al., 2021; Chen et al., 2020)), in this study

PGS was computed with a standard P+T (Prunning and Thresholding) approach implemented in PRSice-2

(Choi and O’Reilly, 2019). The main reason for using this approach is that we tried to mimic the real-life
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practice of PGS analysis that involves running a PGS computational method with multiple parameters

and selecting the best one (Choi et al., 2020). Another reason was that using pre-built PGS models may

introduce a potential bias for some specific arrays as they were used in tuning, and we tried to avoid training

using the same array twice. Using summary statistics for three phenotypes, namely height, body mass

index (BMI), and type 2 diabetes (T2D), obtained from previous GWAS meta analyses (Yengo et al., 2018;

Xue et al., 2018), a PGS for an individual i was calculated as:

PGSi(PT ) =
M∑
j=1

1{Pj<PT }xij β̂j , (1)

where PT is the p-value threshold values (5e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3,

0.5, and 1); M is number of SNPs after clumping with “–clump-kb 250kb” and “–clump-r2 0.1”; xij and

β̂j is the allele count and the marginal effect size derived from GWAS summary statistics of SNPj .

Similar to imputation performance evaluation, we treat PGSs derived from WGS as the “gold-standard”.

PGSs derived from 23 different SNP arrays were evaluated using Pearson’s correlation and absolute

percentile differences compared to the gold-standard under the same PRSice-2 parameter settings. In

addition, absolute difference of PGS percentile ranking generated by array-imputed and the gold-standard

was also evaluated.

3 RESULTS

3.1 Imputation performance

Overall, we found two main factors affecting the imputation accuracy and imputation coverage, including

array sizes and population-specific optimization. The Infinium Omni2.5 v1.5 and Infinium Omni5 v1.2

with approximately 2.4 and 4.3 minion tag SNPs yielded the highest imputation performance. In contrast,

low density SNP arrays with approximately 300,000 tag SNPs such as Infinium HumanCytoSNP-12 v2.1

and Infinium Core-24 v1.2 obtain the poorest imputation performance in all all six examined populations.

At the MAF bin of (0.01-0.5], the Infinium Omni5 v1.2 yielded the mean imputation accuracy r2 of 0.9032,

0.9144, 0.8644, 0.9176, 0.8873, 0.9499 and the imputation coverage of 0.8721, 0.8813, 0.8019, 0.8885,

0.8344, 0.9207 while the Infinium HumanCytoSNP-12 v2.1 obtained 0.6682, 0.7708 0.7112, 0.7608

0.7218, 0.8635 for mean imputation accuracy r2 and 0.4031, 0.6265, 0.5879, 0.6297, 0.5731, 0.7655 for

imputation coverage in six populations AFR, AMR, EAS, EUR, SAS, and VNP respectively. Details are

reported in Figure 2 and Table 2, 3.
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Figure 2. A. Mean imputation r2, and B. Imputation coverage across 22 autosomes of 23 SNP arrays in
the MAF bin of (0.01-0.5]. The dots and the vertical lines present the mean and the standard deviation of
imputation accuracy, and imputation coverage values in 22 autosomes respectively.

Regarding population optimization, imputation performance are generally better for those arrays

optimized specifically for their closely related populations. The Axiom UKB, which is optimized for

the British population, performs superior for the EUR than most other arrays, except for the ultra high
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density arrays Infinium Omni2.5 v1.5 and Infinium Omni5 v1.2. In detail, at the MAF bin of (0.01-0.5],

The Axiom UKB with size of 844k SNPs obtained the mean imputation coverage of 0.8389 which was

higher than globally optimized, higher density arrays such as Axiom PMRA (919k), Axiom PMDA

(922k), Affymetrix 6.0 (932k), Multi-Ethnic Global (1784k), and Infinium GDA (1905k), with imputation

coverage of 0.7814, 0.8078, 0.7513, 0.8228, 0.8277, respectively and lower 0.8409, and 0.8885 that were

obtained by Infinium Omni2.5 v1.5 and Infinium Omni5 v1.2 arrays with 2373k and 4327k SNPs. Similarly,

the Axiom JAPONICA (671k) which was designed for Japanese population also performed well against

global optimized, higher-density arrays. These two arrays yielded mean imputation accuracy of 0.831,

0.9333 and imputation coverage of 0.7642, and 0.9024 in EAS and VNP populations. These performances

were higher than those of multi-ethics SNP arrays, even with higher density including Axiom PMRA

(919k), Axiom PMDA (922k), Affymetrix 6.0 (932k) as showed in Figure 2 and Table 2, 3. Notably,

the Chinese GWAS array, OmniZhongHua, was also out performed in the EAS and VNP populations.

Regarding the AFR population, an optimized population that is Axiom GW PanAFR with 2265k SNPs.

The performance of this array is nearly equivalent the Infinium Omni5 v1.2 array with 4327k SNPs (0.9002

versus 0.9032 for mean imputation accuracy, and 0.8700 versus 0.8721 interns of imputation coverage).

There were no SNP arrays with superior performances in the two remaining populations (AMR and SAS),

although the Axiom UKB and the Axiom GW AS obtained slightly better performance than other arrays

with the same size, when applied for the AMR and SAS populations. In this case, we focused on the MAF

bin of (0.01-0.5] as this is most common cutoff allele frequency in both GWAS and PGS analysis (Visscher

et al., 2017; Choi et al., 2020). However, the results are also generalized for other bins as shown in Figure

S.1 and Table S.1-6.

Table 2. Mean and the standard deviation of imputation accuracy r2 measured in 22 autosomes at the
MAF bin of (0.01-0.5].

Array name AFR AMR EAS EUR SAS VNP
CytoSNP-12 0.6682±0.0498 0.7708±0.043 0.7112±0.0452 0.7608±0.045 0.7218±0.0458 0.8635±0.0304
Infinium Core 0.7066±0.0606 0.7906±0.047 0.7275±0.0494 0.7755±0.0491 0.7391±0.0512 0.871±0.0321
Infinium OncoArray 0.7469±0.0498 0.8215±0.0388 0.7553±0.0428 0.8132±0.0402 0.7745±0.0422 0.8878±0.0275
PsychArray 0.7392±0.0496 0.8126±0.0398 0.7469±0.0437 0.801±0.0415 0.7625±0.0437 0.883±0.028
Axiom GW ASI 0.7707±0.0779 0.8218±0.0641 0.7749±0.0677 0.8078±0.0668 0.7826±0.0687 0.8927±0.0477
Infinium GSA 0.7355±0.0491 0.8281±0.0386 0.7735±0.042 0.8342±0.0391 0.7835±0.0414 0.9026±0.0243
Axiom GW CHB 0.7824±0.0375 0.835±0.0292 0.8011±0.0281 0.8187±0.0299 0.7926±0.0303 0.9147±0.0152
Axiom JAPONICA 0.7797±0.0392 0.8476±0.0307 0.831±0.0321 0.8379±0.0314 0.8149±0.0324 0.9333±0.0161
Axiom GW EUR 0.7489±0.0867 0.8233±0.0698 0.7584±0.0747 0.8264±0.0712 0.7861±0.0749 0.8813±0.0553
Infinium Chinese 0.7953±0.0378 0.8502±0.0318 0.8106±0.0361 0.8412±0.0334 0.8139±0.0346 0.9205±0.0214
Infinium JSA 0.7477±0.0431 0.8254±0.0332 0.7992±0.0346 0.8108±0.0342 0.7829±0.0349 0.9168±0.0184
Axiom UKB 0.7726±0.0321 0.864±0.027 0.7913±0.0303 0.8797±0.0278 0.8281±0.0289 0.9126±0.0167
CytoSNP-850K 0.8363±0.0369 0.8654±0.0308 0.8091±0.0353 0.8552±0.032 0.8283±0.0339 0.9199±0.021
Axiom PMRA 0.8299±0.0302 0.8597±0.0286 0.8143±0.0325 0.8493±0.0308 0.8128±0.0311 0.9217±0.0177
Axiom PMDA 0.8443±0.0216 0.8744±0.0194 0.8032±0.021 0.8665±0.0203 0.8276±0.0226 0.9189±0.0104
Affymetrix 6.0 0.8315±0.0485 0.8545±0.0383 0.7929±0.0443 0.8382±0.0411 0.8131±0.0436 0.9087±0.0269
OmniZhongHua 0.8609±0.0326 0.8817±0.0283 0.8386±0.0327 0.8721±0.0295 0.8503±0.0307 0.9353±0.0185
Multi-Ethnic EUR EAS SAS 0.8446±0.039 0.8801±0.0325 0.8388±0.0379 0.8742±0.0339 0.851±0.0357 0.9335±0.0222
Multi-Ethnic Global 0.8611±0.0358 0.8856±0.0309 0.8428±0.0361 0.8779±0.0324 0.8548±0.0341 0.936±0.0212
Infinium GDA 0.8654±0.0331 0.8893±0.028 0.8463±0.0329 0.8816±0.0295 0.8589±0.0308 0.9384±0.0182
Axiom GW PanAFR 0.9002±0.0273 0.8849±0.0257 0.831±0.0292 0.8689±0.0273 0.8509±0.0278 0.9322±0.0159
Infinium Omni2.5 0.8919±0.0308 0.8975±0.0273 0.8503±0.031 0.891±0.0286 0.8678±0.0294 0.9412±0.0174
Infinium Omni5 0.9032±0.0281 0.9144±0.0244 0.8644±0.0278 0.9176±0.0248 0.8873±0.0263 0.9499±0.0146
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Table 3. Mean and standard deviation of imputation coverage (defined by the proportion of variants with
r2 ≥ 0.8 over total number of variants in each chromosome) measured in 22 autosomes at the MAF bin of
(0.01-0.5].

Array name AFR AMR EAS EUR SAS VNP
CytoSNP-12 0.4031±0.0578 0.6265±0.0621 0.5879±0.0553 0.6297±0.0603 0.5731±0.0584 0.7655±0.0508
Infinium Core 0.4776±0.0883 0.6645±0.0688 0.6162±0.0604 0.6557±0.0645 0.6041±0.0656 0.7801±0.0494
Infinium OncoArray 0.5525±0.0756 0.7205±0.0558 0.6533±0.052 0.7142±0.0529 0.6576±0.0546 0.8119±0.0419
PsychArray 0.5359±0.0744 0.7015±0.058 0.6405±0.0532 0.6909±0.0545 0.6358±0.0564 0.8012±0.0426
Axiom GW ASI 0.6394±0.1148 0.7339±0.0908 0.6876±0.0827 0.716±0.0863 0.6824±0.0872 0.8275±0.0749
Infinium GSA 0.5145±0.0805 0.7373±0.0588 0.6719±0.0552 0.754±0.0558 0.6692±0.0579 0.8476±0.0404
Axiom GW CHB 0.6257±0.0572 0.7428±0.0376 0.7102±0.0312 0.7198±0.0351 0.6826±0.0356 0.8628±0.0209
Axiom JAPONICA 0.6165±0.0648 0.7694±0.0444 0.7642±0.0396 0.7547±0.0415 0.7215±0.0425 0.9024±0.0271
Axiom GW EUR 0.5963±0.1214 0.7386±0.0991 0.665±0.0889 0.7489±0.0939 0.6893±0.0953 0.8096±0.0836
Infinium Chinese 0.6518±0.0606 0.774±0.043 0.7324±0.043 0.7611±0.0416 0.7218±0.0435 0.8752±0.0317
Infinium JSA 0.5316±0.0674 0.7207±0.0494 0.7017±0.0462 0.703±0.0468 0.6603±0.0476 0.8745±0.032
Axiom UKB 0.5866±0.0478 0.8072±0.0352 0.7058±0.0348 0.8389±0.0343 0.75±0.035 0.8646±0.0252
CytoSNP-850K 0.7459±0.0568 0.7979±0.0401 0.7283±0.0415 0.7796±0.0393 0.7413±0.0423 0.8673±0.0312
Axiom PMRA 0.7342±0.0423 0.7969±0.0374 0.7432±0.0388 0.7814±0.0385 0.7253±0.0377 0.8842±0.0274
Axiom PMDA 0.7717±0.0295 0.8234±0.0232 0.724±0.0256 0.8078±0.0243 0.7458±0.0291 0.8721±0.0176
Affymetrix 6.0 0.7364±0.0816 0.7768±0.0574 0.704±0.0559 0.7513±0.0564 0.7168±0.0593 0.8445±0.0454
OmniZhongHua 0.8019±0.0461 0.8275±0.0349 0.7701±0.0373 0.8085±0.0348 0.7773±0.0362 0.899±0.0273
Multi-Ethnic EUR EAS SAS 0.7692±0.0608 0.8309±0.0414 0.774±0.045 0.8189±0.042 0.7846±0.0444 0.9029±0.0323
Multi-Ethnic Global 0.7997±0.0556 0.8376±0.0395 0.7781±0.0434 0.8228±0.0405 0.7886±0.0428 0.9057±0.0307
Infinium GDA 0.8074±0.0505 0.8425±0.036 0.7826±0.0396 0.8277±0.0369 0.7938±0.0391 0.9094±0.0275
Axiom GW PanAFR 0.87±0.0334 0.8281±0.0301 0.7588±0.0314 0.8001±0.031 0.7759±0.0316 0.8862±0.0228
Infinium Omni2.5 0.856±0.0393 0.8529±0.0327 0.7842±0.0344 0.8409±0.0338 0.8034±0.0342 0.907±0.0253
Infinium Omni5 0.8721±0.0349 0.8813±0.0288 0.8019±0.0315 0.8885±0.0294 0.8344±0.0315 0.9207±0.0219

3.2 PGS performance

We evaluated PGS performance of these arrays based on two criteria: (i) Pearson’s correlation of PGSs

estimated by using imputed SNP array data compared to the PGSs estimated by using WGS data - hereafter

we refer as PGS correlation for short, (ii) absolute difference of percentile ranking (ADPR) between

PGSs generated by array-imputed and gold standard WGS. Both comparisons are set under various p-

value cutoffs that allows us unbiased evaluate PGS performance of these arrays. In general, we found

that PGS performance were highly concordant with imputation performance, i.e. SNP arrays with better

imputation performance showed higher correlation with WGS PGSs and less ADPR than the arrays with

poor imputation performance.

The summary results of Pearson’s correlation values of PGSs from 23 genotyping SNP arrays for three

different phenotypes are shown in Figure 3 and in Tables S.7-9. In general, all examined arrays yielded

high PGS correlations. Notably, the vast of majority PGS correlations ranged from 0.90 to 0.99, except

for the Infinium HumanCytoSNP-12 v2.1 which had the lowest values. Interestingly, when optimal arrays

for populations were used, the PGS correlation to WGS was higher than 0.95. The PGS correlation

patterns were also highly concordant in all three evaluated traits with comparable performances. As

expected, SNP arrays with larger sizes had higher PGS correlations. The lowest performer was the Infinium

HumanCytoSNP-12 v2.1 with the correlation of 0.8731 in the height phenotype in the AFR population

while the highest performance was obtained by the Infinium Omni5 v1.2 with the correlation higher

than 0.99 in all populations and traits. We also examined the deviation of PGS correlation in various
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Figure 3. Correlations between PGSs estimated from imputed genotyping data of 23 SNP arrays and PGSs
estimated from WGS in six different populations with three phenotypes including height, BMI, and type
2 diabetes. The dots and the vertical lines present the mean and standard deviation of PGS correlation at
various p-value settings including 5e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5, and 1.

p-value settings. The results showed that SNP array with lower PGS correlation had higher PGS correlation

standard deviation than the high performance arrays, A possible explanation for this observation is the

PGSs estimated from low imputation performance are more vulnerable by the random pruning process

than the high imputation performance arrays (Choi and O’Reilly, 2019). Notably, we also observed the

higher standard deviations of PGS correlation in EAS than other populations.

In agreement with imputation performance, SNP arrays optimized specifically for targeted populations

showed supperior PGS correlation in the targeted/closely related populations. For instance, Axiom Japonica

Array NEO and Infinium OmniZhongHua v1.4 that was optimized for Japanese, and Chinese showed clear

advantages in the populations of EAS, and VNP while Axiom UK Biobank Array yielded higher PGS

correlation in the EUR population than the other size-comparable genotyping arrays. Taking height as

a typical trait of interest, PGS correlations of the Japonica Array NEO were 0.9760, and 0.9847, while
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Figure 4. The absolute difference of percentile ranking between PGSs estimated from imputed genotyping
data of 23 SNP arrays and PGSs estimated from WGS in six different populations. The figure shows results
of three phenotypes including height, BMI, and type two diabetes with PRsice p-value setting of 5e-08.

the Infinium OmniZhongHua v1.4 had 0.9879, and 0.9914 in EAS and VNP respectively. Interestingly,

we observed that the Infinium CytoSNP-850K v1.2 was the array with superior PGS correlations in all

populations, for all the three evaluated traits. For example, the PGS correlation for this array for height
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phenotype in AFR, AMR, EAS, EUR, SAS and VNP were 0.9679, 0.9876, 0.9789, 0.9908, 0.9844, 0.988,

respectively.

Regarding the ADPR metric, the performance of arrays was in an agreement with the trend from

comparing PGS correlation. ADPR in different PRSice-2 p-values settings are shown in Figure ??, Figure

S.2-12 and reported in detail in Table S.10-21. Most of the arrays yielded mean ADPR less than 10 in all

three traits. An exception was the AFR populations with low density arrays. The highest density array, i.e.

Infinium Omni5 v1.2, had the highest performance with ADPR less than 4. Notably, ADPRs varied by

populations. Under-represented populations like AFR, and EAS tended to exhibit higher ADPRs than the

others. Taking the p-value cutoff at 5e-8 for the height phenotype as an example (Figure ??), Infinium

Omni5 v1.2 obtained ADPRs of 3.8600, 2.4774, 2.8884, 1.9758, 2.8391, and 2,3699 in AFR, AMR, EAS,

EUR, SAS and, VNP respectively. A consistent trend was also observed in other traits, with the lowest

performance in AFR and the highest performance in EUR with ADPRs of 3.5974 and 1.8489 in BMI, and

of 3.7206 and 1.6592 in type 2 diabetes. Similar to the other experiments, population specific arrays and

the Infinium CytoSNP-850K v1.2 also illustrated their advantages when comparing the ADPR metric. The

Axiom UK Biobank Array obtained good performance for the EUR population with ADPR of 3.0584,

3.1714, and 2.2734 in height, BMI, and type 2 diabetes respectively. This trend was also observed in

the cases of Axiom Japonica Array NEO, and Infinium OmniZhongHua v1.4 applied for the EAS and

VNP populations. Regarding the Infinium CytoSNP-850K v1.2 array, good performances in all traits and

populations were observed. Specifically, ADPRs for height were 5.7141, 3.4914, 4.3753, 3.2501, 3.7638,

3.0267; for BMI at 4.9872, 2.5463, 4.1560, 2.6272, 3.5409, 3.1523; and for type 2 diabetes at 5.2000,

2.5762, 3.7687, 2.6066, 2.4707, 2.3812 in AFR, AMR, EAS, EUR, SAS and, VNP, respectively, all at the

same p-value cutoff.

3.3 Performance evaluation using real genotyping data

We further utilize the availability of real genotyping data in the 1KVG dataset (95 out of the 1008 samples

were also genotyped by Affymetrix PMRA array) to investigate how our simulated array data performed

relative to the real array data. In brief, we simulated genotyping data of 95 samples by extracting variants

from WGS data that matched with PMRA manifest, excluding phasing information. We then applied the

same evaluation pipeline to compare the performance using simulated genotyping data against the results

from the real genotyping data. In details, both simulated and real PMRA genotyping data were phased

with SHAPEIT v4.1.3 (Delaneau et al., 2019), and imputed with Minimac4 v1.0.2 (Das et al., 2016).

Reference data for both phasing and imputation were the remaining 913 WGS samples. Finally, imputation

performance of both simulated and real PMRA arrays were estimated as described in the “Imputation

performance evaluation” section. As expected, the imputation accuracies of simulated and real PMRA were
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Figure 5. Mean imputation accuracy comparisons of simulated PMRA and real genotyped PMRA of 95
VNP samples at various MAF bins measured in 22 autosomes.

highly concordant as shown in Figure 5 and Table 4. In details, mean and standard deviation of imputation

accuracies of simulated PMRA are 0.7664±0.0309, 0.8522±0.0269, 0.9165±0.0179, and 0.9453±0.014;

real PMRA are 0.7721±0.032, 0.8592±0.0278, 0.9217±0.0181, and 0.9497±0.0138 in four MAF bins of

(0-0.01], (0.01-0.05], (0.01-0.5], and (0.05-0.5], respectively. These results indicated the robustness of our

simulation approach for estimating imputation performances of genotyping arrays in reality.

Table 4. Mean and the standard deviation of imputation accuracies of simulated PMRA and real genotyped
PMRA of 95 VNP samples at various MAF bins measured in 22 autosomes.

MAF range Simulated PMRA Real PMRA
(0-0.01] 0.7664±0.0309 0.7721±0.032
(0.01-0.05] 0.8522±0.0269 0.8592±0.0278
(0.01-0.5] 0.9165±0.0179 0.9217±0.0181
(0.05-0.5] 0.9453±0.014 0.9497±0.0138
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4 DISCUSSIONS AND CONCLUSIONS

Even in a booming time of next-generation sequencing technologies, current big genotyping projects are

still using SNP arrays as the work-horse for generating valuable data, especially for bio-bank scale projects

(Bycroft et al., 2018; Moon et al., 2019; Sakurai-Yageta et al., 2020). Moreover, genotyping by SNP arrays

produce the exact information type required for PGS analysis, which is based on summarizing effect sizes

from individual SNPs. A promising application of genomic research that is gaining increasing interest

recently across the health-care system, and direct-to-consumer genomic services based on polygenic scoring

like 23andMe (Lewis and Vassos, 2020; Folkersen et al., 2020). SNP arrays are clearly more economical

in data generation and analysis, an important factor in designing project with a large sample size and/or

with a limited budget. Given that there are many available human genotyping arrays optimized for various

purposes, a comprehensive guideline for choosing the most suitable SNP arrays in multiple ancestry groups

is still lacking. To address this gap, we have developed a systematic approach and tool to assess a large

range of SNP arrays across multiple datasets. We performed imputation and PGS performance assessments

for 23 human available genotyping arrays in six ancestry groups using both public and in-house datasets by

various metrics. By comparing relative performance of SNP arrays relative to that of WGS with 4 metrics

including imputation accuracy, imputation coverage, PGS correlation, and ADPR, we found expected trends

and our results suggested suitable arrays that can maximize PGS performance for specific populations,

especially for under-represented populations.

Overall, we found that all 23 assessed arrays had high performances in both imputation, and especially in

PGS. These commercial arrays differ markedly in designs, i.e. the number of markers on the arrays and

targeted ancestry groups that would cause performance deviations. An important finding in our analysis was

that in order to obtain high imputation performances, the choice of array is not necessarily about getting

higher density, but small to moderately-sized arrays (approximately 650k-850k tag SNPs), accompanied by

well optimization for the targeted population could also produce high PGS performances. For example,

the Japonica Array NEO, and the UK Biobank Array showed the highest performance when comparing

with other arrays with the same sizes for EAS, and EUR populations respectively. This indicates that

using customized, small-size SNP arrays at population-specific level can be a cost-effective genotyping

solution without loosing PGS performance (Tam et al., 2019; Nguyen et al., 2022). We also observed that

there are no specific arrays with moderate sizes that had superior imputation performances in AFR, and

SAS, suggesting the need for genotyping arrays optimized for these populations. PGS performances were

concordant to imputation performances in general. However, CytoSNP-850K v1.2 was an interesting array

that showed superior PGS performances in all populations. This superior performance may be explained by

the enrichment of cytogenomic regions in the design of the Infinium CytoSNP-850K v1.2 array (Illumina,
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????). In agreement with previous studies (Martin et al., 2019; Sirugo et al., 2019), our analyses also show

that underrepresented populations such as AFR, and SAS exhibited lower PGS performances (and ADPRs

tended to be higher in AFR, and SAS) than other well-studied populations regardless the sample sizes of

these populations are not significant different.

Notably, PGS performances of array constructed from imputed genotypes were very high in comparison

with the original WGS PGS. The majority PGS correlations ranged from 0.90 to 0.99. In cases of optimal

arrays for targeted populations in used (UK Biobank Array is used for EUR, Japonica Array NEO is used

for EAS), the PGS correlation to WGS was higher than 0.97. In addition, PGS ranking differences between

WGS and imputed array genotypes were not high with the majority of differences were under 5 percentile

when optimal arrays were used. The possible reason for this observation was that current GWAS summary

statistics were mostly generated by imputed array genotypes (Xue et al., 2018; Yengo et al., 2018) that are

limited to detect rare associated markers. This indicates that using WGS for PGS analysis does not provide

significant improvement interm of disease risk stratification at this time although this trend can change

in the future when GWAS summary statistics at higher resolution become widely available (Wainschtein

et al., 2022).

Finally, to make this analysis capability available to a broad audience, we developed a web application

that provides interactive analyses SNP array contents and performances. As researchers may be interested

in specific variants or regions, the application is aimed to support researchers to analyze SNP array contents

and imputation performance based on population and genomic regions of interest. We hope that application

will facilitate researchers in designing their genetic studies.
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