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Abstract.
Molecular quantitative trait locus (QTL) mapping of genetic variants with intermediate molecular phenotypes has

proven to be a powerful approach for prioritizing genetic regulatory variants and causal genes identified by Genome-
wide association studies (GWAS). Recently, this success has been extended to circular RNA (circRNA), a potential
group of RNAs that can serve as markers for the diagnosis, prognosis, or therapeutic targets of cancer, cardiovascular,
and autoimmune diseases. However, the detection of circRNA QTL (circQTL) currently is heavily reliant on a single
circRNA detection algorithm for circRNA annotation and quantification which implies limitations in both sensitivity
and specificity. In this study, we show that circQTL results produced by different circRNA calling tools are extremely
divergent, making difficulties in interpretation. To resolve this issue, we develop an integrative method for circQTL
mapping and implement it as an automated, reproducible, and scalable, and easy-to-use framework based on Nextflow,
named cscQTL. Compared to the existing approach, the new method effectively identify circQTLs with an increase
of 20-100% circQTLs detected and recovered all circQTLs that are highly supported by the single method approach.
We apply the new method to a dataset of human T cells and discover genetic variants that control the expression of
55 circRNAs. By collocation analysis, we further identify circBACH2 and circYY1AP1 as potential candidates for
immune disease regulation. cscQTL is freely available at: https://github.com/datngu/cscQTL.
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1 Introduction

In order to understand how genetic variations contribute to the variation of phenotypes, genome-

wide association studies (GWAS) are often employed to identify such relations. Over nearly two

decades of accumulation, GWAS have successfully detected thousands of DNA variants associated

with human complex and disease traits [1]. Furthermore, we have learned that complex traits are

mostly driven by non-coding variants with small effect sizes [2,3]. Although the number of detected

trait-associated variants continues to grow, understanding the underlying molecular mechanisms

of most GWAS loci remains a challenge due to the non-coding nature of 90% GWAS loci [4,5].

Among the possible approaches to tackle this challenge, molecular quantitative trait locus

(QTL) mapping of genetic variants with intermediate molecular phenotypes, such as gene ex-

pression (eQTLs) and splicing (sQTLs), has proven to be a powerful tool to prioritize genetic

regulatory variants and causal genes. Multiple studies have shown that GWAS hits are enriched in

significant eQTLs/sQTLs loci and regulatory elements, suggesting gene regulation mechanisms of

trait-associated DNA variants [6,7,8,9,10,11]. Moreover, the success of the QTL approach has recently

expanded to include the discovery of genetic variants controlling RNA editing [12].

Circular RNA (circRNA) is a relatively young class of RNA molecules characterized by co-

valently closed-loop structures without a 5’ cap or a 3’ poly (A) tail, formed by back-splicing

events during RNA splicing processes [13,14,15]. To date, over a million circRNAs have been iden-

tified in humans and other vertebrate species [16]. Multiple studies showed that circRNAs exhibit

unique expression patterns in tissues and developmental stages and are more stable than other RNA

types [17,18,19]. Functional studies suggested that circRNAs play critical roles in various cellular

processes and disease pathogenesis, including acting as microRNA sponges [20,21], regulating pre-

mRNA splicing [22], and modulating innate immunity [23]. Indeed, a few pioneer circQTL studies

shed the light on the impact of genetic variants on circRNA expressions to regulatory mechanisms

underlying human complex diseases [24,25,26,27].

It is different from linear RNA with high-quality annotations available for direct quantification.

CircRNAs typically lack full-length transcript annotations and must be identified and quantified

primarily based on the detection of reads containing a back-splicing junction (BSJ), where the

end of an exon joins to the start of itself or of another exon from the same gene. In addition,
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circRNAs are known to express differently across tissues [17,18,19] making circRNA identification

becomes necessary in circQTL studies.

While eQTL is well established with multiple computational pipelines and standardized pro-

tocols exist [9,10,28,29], circQTL mapping is still in its early stages with no comprehensive computa-

tional pipeline available. Current circQTL studies are commonly implemented by simply taking

the output of a single circRNA detection algorithm, and directly using the BSJ counts as expres-

sion levels for QTL mapping [24,25,26,27]. This type of circQTL mapping is hereafter referred to as

the single method approach. Although it is easy to use, utilizing only one circRNA calling method

implies certain limitations. Firstly, circRNA detection still suffers from a certain amount of false

positives regardless of the efforts of state-of-the-art circRNA calling methods [30,31,32]. Secondly,

circRNA detection exhibits little agreement between calling tools that implies the potential diver-

gence results in circQTL downstream analyses [33,34,35,36]. One potential solution to improve the

specificity and sensitivity of circRNA detection is combining outputs of several circRNA detection

algorithms [36]. However, this approach is only straightforward for annotation studies such as cir-

cRNA database construction [16]. For quantitative studies such as circQTL, it would arise another

technical challenge in quantification integration since each circRNA calling algorithm has its own

output of expression levels.

Here, we aim to establish the first comprehensive computational pipeline for circQTL analysis.

We show that using a single circRNA detection method approach indeed produces highly diver-

gent QTL results between circRNA calling algorithms. To address this challenge, we develop an

integrative method called cscQTL to systematical combine circRNA output from different tools

for circQTL analysis by a re-quantification approach. Compared to the single method circQTL

approach, cscQTL identifies more circQTLs and provides more coherence results. We implement

cscQTL as an automated, reproducible, and scalable framework based on Nextflow [37]. By apply-

ing cscQTL, we find genetic variants controlling expressions of 55 circRNAs in human T cells

and identify circBACH2 and circYY1AP1 as potential circRNAs for immune disease regulation

by collocation analyses.
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Fig 1 Challenges in circQTL analysis. (A) The number of circRNAs used for QTL testing with reference to CircAtlas.
(B) and (C) Venn diagrams showing the overlapping of QTL-tested circRNAs and eCircRNAs identified by three
different circRNA calling algorithms.

Table 1 The number of circRNA used for QTL testing with reference to CircAtlas and the number of eCircRNAs
detected by three circRNA calling algorithms Circall, CIRI2, CIRCexplorer2, and their consensus statistics.

Methods
Detected circRNAs

Detected eCircRNA
All CircAtlas

Circall 5586 5427 46

CIRI2 6778 6764 41

CIRCexplorer2 3336 3250 15

Total unique circRNA/eCircRNA 7224 7015 71

Supported by at least 2 methods 5450 5402 24

Supported by all 3 methods 3026 3024 7
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2 Results

2.1 Challenges in circQTL analysis

To assess the impact of different circRNA calling algorithms on circQTL mapping results, we

evaluate three commonly used algorithms: Circall [32], CIRI2 [31], and CIRCexplorer2 [30] using a

publicly available dataset of 40 individuals [38]. These algorithms are chosen based on their reported

high accuracy and efficiency in previous studies [32,34,35]. We apply each algorithm with its default

settings for circRNA calling, using the same genome annotation. We then perform uniform data

reprocessing and circQTL mapping, as described in the Methods section.

The number of circRNAs remaining for QTL testing is 5586, 6778, and 3336 for Circall, CIRI2,

and CIRCexplorer2, respectively. To confirm the accuracy of the called circRNAs, we compare

them against the most comprehensive public catalog of CircAtlas [16]. The majority of the called

circRNAs by all three methods are found in CircAtlas, with ratios of 97.15%, 97.42%, and 99.79%

for Circall, CIRCexplorer2, and CIRI2, respectively (Table 1 and Fig 1 A). We observe a low

degree of overlap between the calling algorithms, which is consistent with previous studies [34,35].

Specifically, out of the 7224 unique circRNAs called by the three algorithms, 41.89% (3026/7224)

are detected by all three methods, and 75.44% (5450/7224) are supported by at least two methods

(Fig 1 B).

Regarding the QTL mapping results, a total of 71 distinct eCircRNAs (circRNAs whose expres-

sion levels associate with at least one genetic variant) are detected under Storey’s q-value < 0.05

procedure [39]. Among these, 46 were identified by Circall, 41 by CIRI2, and 15 by CIRCexplorer2.

Less than 10% (7/71) of the detected eCircRNAs are supported by all three algorithms, and approx-

imately one-third (24/71) is supported by at least two methods, as shown in Table 1 and Fig 1 C.

These results indicate that the choice of circRNA detection tools affects both the number and con-

tent of eCircRNAs detected. Although circRNA detection is a well-known challenging task, with

results varying by the choice of algorithm [33,34,35], the consensus of QTL mapping results is even

more divergent indicating limitations in both sensitivity and specificity of single method circQTL

mapping approach. Furthermore, this inconsistent results can make interpretation intractable, limit

the transferability and reproducibility of the analysis, and hence, require a more efficient method

to address these issues.
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2.2 cscQTL: integrative circular RNA quantitative trait locus discovery

2.2.1 Overview of the cscQTL pipeline
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Fig 2 Overview of the cscQTL pipeline. A) Workflow of circQTL mapping. CircRNAs are first identified by Cir-
call, CIRCexplorer2, and CIRI2. Then, cscQTL applies consensus-based filtering to obtain high-quality circRNA
candidates before quantifying by re-alignment of RNA-seq reads against the pseudo circRNA references; circRNA ex-
pressions then go through scaling, quantile-quantile normalization before CircQTL mapping and collocation analyses.
B) The construction of pseudo circRNA references. Based on circRNA annotations detected by circRNA calling algo-
rithms, a pseudo circRNA reference is generated by joining 149 bases of the upstream sequences of the end positions
with 149 bases of the downstream sequences of the start positions. It is noted the pseudo circRNA reference is not
present in the corresponding linear form.

Motivated by previous studies demonstrating that combining multiple circRNA calling tools

and re-quantification can improve consistency in circRNA calling and downstream differential

expression analyses [36,40], we propose a novel integrative framework called cscQTL (consensus-

based circRNA QTL mapping) to address these challenges. Firstly, cscQTL minimizes divergence

among circRNA calling algorithms by combining circRNA inputs from three high-accuracy cir-

cRNA identification algorithms. Secondly, cscQTL implements re-mapping and quantification

procedures to provide accurate quantification of circRNAs. Finally, cscQTL is implemented us-
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ing Nextflow [37], which enables reproducible and scalable circQTL analyses in an automatic and

user-friendly manner.

An overview of cscQTL is presented in Fig 2 A. First, RNA-seq (ribo-minus) data is used

for circRNA identification by Circall, CIRI2, and CIRCexplorer2, with specific aligners allocated

based on the authors’ suggested parameters. The detected circRNA candidates are harmonized

to obtain a similar format before consensus-based filtering to obtain high-quality BSJ sites. In

this implementation, circRNA candidates with >= 2 BSJ reads in at least one sample are kept

before consensus filtering with different cutoffs of 1, 2, and 3 supporting methods. To accurately

quantify the expression level of circRNAs and filter false-positive BSJ reads, reads that are fully

mapped to the linear transcripts are discarded, and quantification is performed by counting the

number of fragments mapped to pseudo circRNA references generated by concatenating 149 bases

of the upstream sequences of the end positions with 149 bases of the downstream sequences of the

start positions (Fig 2 B). Quasi-mapping is used for these alignment steps to ensure computational

efficiency [41]. Since only highly confident circRNAs are considered in the quantification, a loose

filtering criterion is applied, i.e., filtering is applied with only one condition that the shorter piece

of the read must cover the junction break point with at least 7 bases. After obtaining the counting

matrix, the subsequent steps, such as population filtering, z-score scaling, quantile-quantile (Q-Q)

normalization, covariate analyses, and QTL mapping, proceed similarly to other methods before

collocation testing, as described in detail in the Methods section.

2.2.2 Comparison of cscQTL against standard circQTL mapping approaches

To illustrate the efficiency of cscQTL, we apply the pipeline with different consensus cutoffs of

1, 2, and 3 denoted as cscQTL_1, cscQTL_2, and cscQTL_3 respectively, and compare them

against the single method QTL approach that performs circQTL mapping by directly use circRNA

quantification from a single circRNA calling method as implemented with Circall, CIRI2, and

CIRCexplorer2. Since we do not know the ground truth of genetic variants controlling circRNA

expressions. We consider the result of the single method circQTL mapping approach as the base-

line for evaluating the concordance and the number of eCircQTL called.

In this experiment, we also check the contents of tested circRNAs to circAtlas to illustrate the

validity of the analyses (Fig S.1 A). Regarding circQTL mapping, eCircRNAs detected are com-
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Fig 3 Comparison of circQTL calling pipelines. (A) The number of eCircRNAs detected by Circall, CIRCexplorer2,
CIRI, and cscQTL (tested circRNAs are supported by at least 1, 2, and 3 circRNA detection algorithms corresponding
to cscQTL_1, cscQTL_2, and cscQTL_3) . (B) Venn diagrams showing the overlap of eCircQTLs identified by Circall,
CIRCexplorer2, CIRI, and cscQTL_3.

pletely overlapped (Fig S.1 B) and and the numbers are decreased by the levels of stringency as

expected. At the loosest setting (consensus cutoffs of 1), cscQTL detected a total of 94 unique

eCircRNAs. The corresponding numbers are 61, and 55 for the setting of 2, and 3 that cscQTL

considers circRNA candidates supported by at least 2 or 3 methods by either Circall, CIRI2, and

CIRCexplorer2 for re-quantification. Compared to the single method approach, cscQTL identi-

fies approximately 20-100% more eCircRNAs (depending on consensus settings) than the most

effective single method approach which is Circall with 46 eCircRNA identified as shown in 3 A.

Importantly, cscQTL results are highly concordant with the single method circQTL mapping. For

instance, 40 out of 71 eCircQTL identified all three single methods are recalled by cscQTL_3. The

corresponding number of cscQTL_2 and cscQTL_1 are 41 and 51 out of 71. Furthermore, all 24

highly confident eCircRNAs that are identified by at least 2 single methods are showing up in all

consensus settings. Overall, these results indicate the robustness of cscQTL (Fig 3 B, and Fig S.1

C, D).
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Fig 4 Genetic regulation of circRNA expression in human T cells. (A) Q–Q plot distribution of all nominal p-values.
(B) Predictive effects of circSNPs by Variant Effect Predictor. (C) Distance distribution of circSNPs from the BSJ
sites. (D) Overlapping between circQTL host genes and gene-based eQTLs. (E) Pearson correlation and its significant
test of circSNPs’ effect sizes and the effect size of their corresponding parent mRNA genes.
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2.3 Genetic regulation of circRNA in human T cell

2.3.1 Characterization of circRNA-associated genetic variants

As an application of cscQTL, we set the consensus setting to 3, the most stringent setup, for

further analyses. We tested approximately 6.1 million SNPs and 6080 circRNAs for cis-QTL

associations within 1MB of BSJ boundaries. As shown in Figure 4A, the Q-Q plot of the genome-

wide distribution of the test statistic against the expected null distribution is extremely higher than

the diagonal line in the right tail, indicating no evidence for systematic spurious associations. By

applying permutation tests implemented in FastQTL and Storey’s q-value < 0.05 multiple testing

correction procedure for the number of circRNAs tested, we identify 55 eCircRNAs that belong to

45 distinct host genes according to Ensembl v106 annotation. To identify the full list of significant

variant-circRNA associations, we use the top nominal p-value of the circRNA closest to the 0.05

FDR threshold as a genome-wide threshold. In this way, we identify a total of 5269 pairs of

significant variant-circRNA associations. We define genetic variants with at least a significant in

this context as circSNPs. These circSNPs are then further annotated with the Ensembl Variant

Effect Predictor (VEP) [42]. The most dominant variant classes were intronic, upstream gene, and

intergenic variants, accounting for 73.37%, 6.21%, and 6.06% respectively, while other classes

account for the remaining proportion, as shown in Figure 4B.

Regarding the distance distribution relative to the tested circRNAs, circSNPs are mostly lo-

cated near the BSJ, with rare cases located beyond 500kb from BSJs, as shown in Figure 4C. To

understand the relationship between circQTLs and their host gene eQTLs, we further perform a

traditional gene-based eQTL analysis in the same dataset (details are described in Methods). We

observe that around 35% (16/45) of eCircRNA host genes are also significant in gene-based tests,

regardless of the larger number of eGenes identified with 793 distinct Ensembl gene IDs, as shown

in Figure 4D indicating the distinction between the two classes of RNA. We finally compare the

effect sizes of the two QTLs by searching for matched pairs of variants and circRNA host genes.

We observe a strong correlation (Pearson correlation R=0.736, p-value < 2.2e-16) of effect sizes

between gene-based eQTL and circQTLs, as shown in Figure 4E.
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Fig 5 A T1D GWAS locus associated with circBACH2 (6:90206569:90271941) expression. (A) circBACH2 collo-
cated with T1D GWAS. The top SNP rs60066732 is highlighted with a purple diamond. (B) and (C) Associations of
circBACH2 and its linear parent gene (BACH2) to the top SNP with the risk allele G.

2.3.2 Collocation between circQTLs and immune disease GWAS loci

To investigate the possible relation between circQTLs and immune GWAS loci, we perform col-

location tests using COLOC [43]. Specifically, we obtain GWAS summary statistics of Crohn’s dis-

ease (CD), Inflammatory bowel disease (IBD) [44], and Type 1 diabetes (T1D) [45] from the GWAS

catalog webpage [46]. We consider a PP.H4 >= 0.5 as the collocation threshold and visualize the

collocation using LocusCompare [47]. Overall, two out of 55 circRNAs exhibit collocations with

immune disease GWAS loci including circBACH2 (6:90206569:90271941 - ENSG00000112182)
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and circYY1AP1 (1:155676548:155679512 - ENSG00000163374). circBACH2 is collocated with

all tested traits including T1D, CD, and IBD with probabilities of 0.89, 0.91, and 0.91, respectively

(Fig 5 A, S.2, and S.3). Regarding circYY1AP1, it is collocated to CD with a probability of 0.68

and to IBD with a probability of 0.61 (Fig S.4 and S.5). Interestingly, BACH2 is a known risk gene

for T1D [48]. We further investigate the effect sizes of the top circSNPs (rs60066732) in circQTL

and gene-level eQTL. As shown in Fig 5 B and C, the SNP rs60066732 are negatively correlated

with both types of transcripts, but the effect size, as well as the p-value of the circRNA transcript,

are much more extreme and significant than its host gene, indicating the potential role of circRNA

in T1D risk.

3 Discussion

CircRNA detection is known as a challenging task. Deploying a single algorithm in a circQTL

study indeed exhibits highly divergent results suggesting limitations in both sensitivity and speci-

ficity of the approach. Combining several algorithms in circRNA detection has been proposed

and implemented in database construction [16,36] as an efficient solution for these issues. In this

study, we extend this idea to circQTL analysis by developing a novel computational framework

called cscQTL to unify outputs of multiple circRNA calling algorithms for circQLT mapping. By

using consensus-based filtering together with the re-quantification procedure, cscQTL provides a

coherent interpretation of circQTLs while it is still able to take advantage of combing multiple

circRNA calling algorithms. Compared to the single-method circQTL mapping approach, csc-

QTL recalls all highly confident circQTLs (identified by at least two single methods). The method

further identifies more circQTLs circQTLs than any single-method circQTL mapping even with

the most stringent setting (considers only circRNA candidates identified in all three algorithms),

indicating its reliability and robustness. While the high concordant with single method circQTL

mapping can be explained by the consensus-based filter, the efficiency can be explained by the

accurate re-quantification procedure of cscQTL. In contrast to cscQTL which focuses only on the

quantification of high-quality circRNA candidates identified by combining several algorithms. Cir-

cRNA detection algorithms are commonly designed for de-novo identification in small sample size

experiments with various statistical and rule-based BSJ read filtering implemented [49]. Although

sophisticated filters are useful in reducing possible false positive circRNAs in sample-based cir-
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cRNA discovery, they may introduce unexpected noise in population-based downstream analyses

that directly use BSJ counting as expression levels.

Performing circQTL analysis is a fairly complicated task that often employs multiple bioinfor-

matics frameworks and statistical tests, limiting their transferability and replicability. Given that

current circQTL studies make use of highly customized pipelines. For instance, Ahmed et al’s

study [24] employed their in-house pipeline for circRNA calling, combined with Matrix eQTL [50],

and eigenMT [51] for multiple testing correction while Aherrahrou et al made use of CIRI2 [31],

tensorQTL [52], and q-value correction [39] for the corresponding tasks. With the increasing atten-

tion on circRNAs, the bioinformatics community would benefit from a unified but open-source

and portable circQTL workflow. By taking the advantage of Nextflow, we implement cscQTL as

an easy-to-use pipeline and made it freely available to the public. With inputs being a directory

of RNA-seq data, a genome reference, GWAS summary statistic data, and a metadata input file,

cscQTL automatically performs circRNA identification, filtering, re-quantification, QTL mapping,

and collocation analyses. As the potential role of circRNA in human health and disease is becom-

ing more appreciated [53,54,55,56], we believe that our proposed method will facilitate the discovery

of circQTLs in the near future.

Overall, this study provides insights into the impact of circRNA calling tools on circQTL re-

sults and presents an improved method for circQTL mapping that can potentially enhance the

understanding of the regulatory mechanisms underlying circRNAs in human diseases

4 Methods

4.1 Datasets

A publicly available RNA-depleted RNA sequencing dataset consisting of 40 individuals, includ-

ing CD4+ T naive cells, are obtained from Synapse (https://doi.org/10.7303/syn22250947).

Briefly, purified and enriched CD4+ T cell samples were processed using the Illumina TruSeq

Stranded Total RNA Kit with Ribo-Zero Gold, and subsequently, sequenced on the Illumina HiSeq

2000 platform, as previously described [38], to produce 100bp paired-end (PE) reads. Correspond-

ing whole-genome sequencing genotypes of matched individuals are also downloaded from Figshare

(https://doi.org/10.6084/m9.figshare.12646238.v5), as provided in the same

publication [38].
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4.2 Circular RNA identification

The downloaded ribo-minus RNA-seq reads are used for circRNA calling using three different

tools: Circall v1.0.1 [32], CIRI v2.0.6 [31], and CIRCexplorer2 [30]. The reference genome, tran-

scriptome, and genome annotation of hg38 version 106 are obtained from the Ensembl website

(http://ftp.ensembl.org/pub/release-106/). All tools are run with their default

suggested parameters and designed alignment algorithms. For instance, Circall v1.0.1 is exe-

cuted with the option “-td TRUE” and its built-in quasi-mapping [41]; CIRI2 is applied with BWA-

MEM [57] parameter “–T 19”; and CIRCexplorer2 is deployed with the STAR aligner [58] with op-

tions “–chimSegmentMin 10 –chimOutType Junctions,” as suggested in a benchmarking study [35].

4.3 Data processing and QTL mapping

To ensure a fair evaluation between circRNA calling tools used in the study, all detected circRNAs

are uniformly processed. Initially, the detected circRNAs from each tool are merged. To filter out

lowly expressed circRNAs, we apply a population-scale filter to keep only those with supporting

BSJ counts greater than or equal to 2 and detected in at least 30% of the 40 samples. The BSJ

counts are then normalized by library sizes to obtain circRNA count per million units (CPM).

The resulting expression matrices are then scaled and quantile-quantile normalized to fit a normal

distribution as implemented in standard eQTL workflows [11,59].

Regarding the genotyping data, variants with Hardy-Weinberg Equilibrium (HWE) p-values

below 10-6 and minor allele frequency below 5% are removed using PLINK v1.9 [60]. Additionally,

genetic principal components (PCs) are calculated after pruning using the options “–indep-pairwise

200 50 0.25” to exclude potential confounding effects due to population genetic structure.

QTL mappings are then performed using FastQTL v2.184 [61]. For each test feature (cir-

cRNA/mRNA), the adaptive permutation mode is used with the setting with options “–permute

1000 10000” within 1MB window “–window 1e6”. The obtained FastQTL beta distribution ap-

proximated empirical p-values are then used to calculate trait-level q values [39] to account for

multiple testing. A false discovery rate (FDR) < 0.05 is then applied to identify eCircRNA .i.e. cir-

cRNA with at least one significant circQTL. For covariate inclusion in the linear regression, sex,

age, four genotype PCs, and a number of PEER factors (between from 1 to 20) [62] are included

to optimize the number of significant eCircRNA. The optimized PEER factor is then used for
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nominal QTL mapping to obtain nominal p-values for downstream analyses. Finally, the detected

circQTLs are tested for collocation with GWAS loci using COLOC [43]. In this implementation, we

consider several immune disease GWAS summary statistics, including Crohn’s disease, inflamma-

tory bowel disease [44], and type 1 diabetes [45]. Significant GWAS loci are tested with all significant

eCircRNAs with a threshold of PP.H4 >= 0.5.

4.4 Gene-based eQTL mapping

Regarding gene-based eQTL testing, we follow a similar procedure as for circQTL with some mod-

ifications in quantification. Specifically, we use the pseudo-alignment mode of Salmon v1.3.0 [63]

to directly quantify RNA-seq data, using the same genome annotation (hg38 version 106 obtained

from Ensembl). We then aggregate transcript-level quantification of mRNAs in transcript per mil-

lion (TPM) units to the gene level using the “tximport” package [64]. We also apply the population-

scale filter to remove genes expressed in less than 30% of the 40 samples before performing data

scaling and quantile-quantile normalization. We then perform eQTL mapping with FastQTL [61]

and account for multiple testing using the adaptive permutation scheme and q-value procedure [39],

as described in the previous section.
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