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Abstract—Regardless of the rapid development of sequencing
technology, single nucleotide polymorphism (SNP) array has been
widely used for many large-scale genomic studies due to its
cost-effectiveness. Recently, in parallel with the advancement in
imputation strategies, several genotyping platforms for various
species have been developed. Despite the importance of imputa-
tion accuracy in SNP array design, to the best of our knowledge,
there are no systematic studies for evaluating tag SNP selection
methods based on this metric. In this paper, using the leave-
one-out cross-validation approach on the 1000 genome high-
coverage dataset, we comprehensively evaluated four well-known
tag SNP selection algorithms based on imputation accuracy. Our
results showed that although all widely used methods for SNP
array design can provide reasonable imputation accuracy, pair-
wise linkage disequilibrium based tag SNP selection algorithm
achieves the best performance. Our pipelines for running evalu-
ated algorithms and leave-one-out cross-validation are available
for public use at https://github.com/datngu/TagSNP evaluation.

Index Terms—Tag SNP selection, SNP array design, genotyping
imputation, linkage disequilibrium

I. INTRODUCTION

Genomic variants can be genotyped using various technolo-
gies, including genome-wide single nucleotide polymorphism
(SNP) array and whole-genome sequencing (WGS). While
WGS is able to capture all genomic variants in the genome,
SNP arrays, which have several advantages, such as cost-
effectiveness, reliability of the technology, and light computa-
tional requirement, are being used extensively [1]. However,
due to capacity limitation of the SNP arrays, array-based
genomic studies often required genotyping imputation to infer
missing variants. This analysis routine significantly increases
the number of variants for association tests by predicting the
genotypes at the SNPs that are not directly genotyped in the
study sample. Performance of the imputation is dependent
on three main factors including imputation algorithms [2],

imputation reference panel [3], [4], and the design of the
genotyping arrays [5].

Recent years have witnessed the rapid development of
several genotyping platforms for various species focusing on
imputation optimization [6]–[11]. This trend is also popular
in human. For instance, numerous genotyping arrays were
introduced recently to improve the power of genome-wide
association study at the population-specific level. Indeed,
population-specific genotyping arrays such as the UK Biobank
Axiom Array [12], the Axiom-NL Array [13], the TWB Array
[14], the Axiom China Kadoorie Biobank Array [15], the
Japonica and Japonica NEO Arrays [16], [17], and the Axiom
KoreanChip [18] have been successfully implemented.

Two main strategies for selecting SNPs to place on microar-
rays, called tag SNPs, includes optimizing genomic distance
with the equidistant principle and maximizing linkage disequi-
librium (LD) [6]–[11], [16]–[23]. The genomic distance-based
method, which is commonly referred to as equidistance (EQ),
is mainly employed in animal sciences to choose SNPs based
on physical intervals (in pb) along chromosomes. This strategy
can be set to select tag SNPs either uniformly or to optimize
for minor allele frequency (MAF) in each genomic window
[11], [23]. In contrast, the LD-based method, which is used in
both human and animal sciences [11], [24], utilizes pairwise
LD information with the greedy approach to maximize LD
coverage [17], [22], [25]. A typical algorithm using this strat-
egy weights each SNP candidate by the number of neighbor
SNPs that pass a specific LD threshold. The SNP with the
highest number of neighbors is selected as tag SNP for the
current round, and all neighbor SNPs are removed from the
target set. These steps are iterated until the desired number of
tag SNP is reached, or LD r2 threshold is not satisfied by the
remaining SNPs [19], [25]. In addition, the LD-based approach
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can be extended to multi-markers, which prioritizes tag SNPs
based on multi-marker LD computation [26]–[28].

Despite the importance of tag SNP selection in SNP array
design, available comparative studies of tag SNP selection
strategies have been carried out on small datasets and primarily
focused on evaluating pair-wide LD coverage [29], [30].
Furthermore, evaluating tag SNPs selected from either LD cov-
erage or genomic distance remains challenging. It is unclear
which approach would yield better imputation accuracy, a gold
standard for SNP array assessment [5], [22]. In this work,
we introduce an imputation-based evaluation for four widely-
used algorithms in SNP array design - TagIt , FastTagger,
EQ uniform, and EQ MAF. These algorithms select tag SNPs
based on pairwise LD, multi-marker LD, EQ uniform, and
EQ with MAF optimization, respectively [11], [23], [25],
[28]. Using the leave-one-out cross-validation approach, we
evaluated each algorithm’s performance on genomic data of
four super populations, obtained from The 1000 Genomes
Project (1kGP)-high coverage dataset [20]–[22], [31].

II. METHOD

A. Genomic data prepossessing

Phased variant callsets in variant calling format (VCF),
which contain 2504 unrelated samples originated from 1kGP
phase 3 release and expanded 698 related individuals, are
obtained from The International Genome Sample Resource
(IGSR) data portal [31]. Only unrelated samples are included
in the analysis, and they are assigned to their super pop-
ulation according to IGSR’s annotation. This analysis only
has chromosome 10 due to computational reasons, and only
biallelic SNPs with minor allele frequency (MAF) ≥ 1% are
kept for tag SNP selection and imputation evaluation. Finally,
four major populations are analyzed in our study, including
East Asian (EAS), European (EUR), South Asian (SAS), and
Americas (AMR) with 504, 503, 489, and 347 individuals,
respectively.

B. Tag SNP selection algorithms

We compare four current widely used approaches for SNP
array designing, including TagIt, FastTagger, EQ uniform, and
EQ MAF [11], [23], [25], [28]. TagIt, widely used in human
SNP array design, is a tag SNPs selection algorithm based
on pairwise LD information [17], [22], [25]. From a set of
targeted SNPs, TagIt weights each SNP candidate by the
number of neighbor SNPs (in a specific genomic distance)
that have square pairwise LD r2 greater or equal to a specific
cutoff, e.g., 0.8. The SNP with the highest score is selected,
and its neighbor SNPs are removed from the targeted set.
The process is iterated until reaching the desired number
of tag SNP, or no more SNP satisfies the LD r2 threshold
[25]. FastTagger uses a fast implementation of the multi-
marker LD approach, which reduces the number of tag SNPs
selected while maintaining high genomic coverage. In brief,
the multi-marker LD approach finds association rules of one
and multiple SNPs, termed multi-marker r2 statistics, and uses
this information to identify tag SNPs [27], [28], [32]. The

major bottleneck of this approach is the computational burden;
for instance, standard algorithms using multi-marker models
usually fail to run on chromosomes containing more than 100k
SNPs. FastTagger, on the other hand, resolves this problem
by employing several techniques to reduce running time and
memory consumption and makes this approach became more
scalable [28].

The EQ strategy selects tag SNP according to the equidistant
principle that involves dividing chromosomes into certain
intervals with equal genomic length [6]–[11], [23]. While
the EQ uniform assumes that genetic variants are uniformly
distributed and selects them based on physical intervals (in
pb) along chromosomes [23], the EQ MAF adjusts for minor
allele frequency (MAF) in each genomic window [11]. For
each interval, the SNP with the highest MAF, or further to the
left, in case of equivalent MAF, was chosen as representative
of the interval [11].

C. Performance evaluations

In our study, imputation accuracy and imputation coverage
are employed as evaluation metrics in replacement of LD
coverage [5], [20], [22]. Imputation accuracy is determined
through the leave-one-out cross-validation approach (Figure
1). More precisely, imputation is performed individually for
each sample using Minimac4 with a reference panel that does
not have the sample itself [2]. Selected tag SNPs are denoted
as ‘genotyped’, and other sites are set as missing. For each
SNP, squared Pearson’s correlation is then calculated from
imputation estimated dosages to the true genotypes in the
original VCF file. Imputation coverage is calculated as the
proportion of SNP with imputation r2 that are greater or
equal to a specific threshold, e.g., 0.8. Imputation accuracy is
reported as overall imputation accuracy by computing mean
squared Pearson’s correlation of all SNPs or binned imputation
accuracies of various discrete minor allele frequency bins. In
addition, running time of each algorithms is also evaluated in
this study.

D. Parameter setting and running algorithms

To facilitate comparison between methods, LD cutoff is
set at 0.8 for TagIt and FastTagger min r2 1; FastTagger
min r2 2, and min r2 3 are set to 0.9, 0.95 respectively, as
recommended by the authors. Since EQ uniform, EQ MAF,
and FastTagger select more tag SNPs than TagIt does, the
number of selected tag SNPs from each population for all
algorithms are set to the number of SNP selected by TagIt. Be-
cause methods require different input data formats, customized
scripts and data pre-processing steps are needed. As TagIt
requires pre-computed LD pairwise and MAF information, we
used Plink v1.9 and vcftools to obtain such data respectively
[33], [34]. Pairwise LDs are computed within a maximum
genomic distance of 1 megabase (MB) and minimum LD r2
cutoff of 0.8 [33] and MAFs are extracted with vcftools [34].
A customized script is then used to obtain the final Tagit’s
input. In the meanwhile, another customized script is used
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Fig. 1. Leave-one-out cross-validation strategy. Tag SNPs selected are denoted as ‘genotyped’, and other sites are set as missing. Imputation is performed
individually for each sample with the exclusion of itself from the reference panel. Squared Pearson’s correlation is then calculated from imputation estimated
dosages to the true genotypes from the original VCF file for each SNP.

to obtain FastTagger required input that are matrixes of hap-
lotypes and their corresponding MAF information. Regarding
EQ uniform, and EQ MAF, genomic positions and MAFs are
extracted with bcftools as input for tag SNP selections. All
runs are implemented in a workstation using Intel Core i9-
9900K CPU at 3.60GHz/core under Ubuntu 18 OS. All tools
are run in single-core, each core has 16 GB memory; the
reported time is in core-hours. The performance evaluation
workflow is implemented in a set of scripts that is available for
public use at https://github.com/datngu/TagSNP evaluation.

III. RESULT

A. Imputation accuracy

In general, all evaluated algorithms obtain high imputation
accuracy, with most of the overall imputation accuracy are
higher than 0.8. Details of the performance are reported in
Table I. With overall imputation accuracies of 0.87,0.90, 0.88,
and 0.88 in EAS, EUR, SAS, and AMR, TagIt is the best
performer, followed by EQ uniform. In contrast, FastTagger

and EQ MAF are consistently the worst. We further evaluate
the performance of these methods by comparing imputation
accuracy for various MAF bins as represented in Figure 2. The
curves of TagIt, EQ uniform, EQ MAF, and FastTagger are
consistent with their overall imputation accuracy. The curves
for TagIt are consistently above the ones for other methods.
It is noteworthy that FastTagger outperforms EQ MAF at
low MAF but is worse than EQ MAF at high MAF. The
Figure 2 also indicates that imputation accuracy decreases
as MAF bins move to lower frequency, and this trend is
consistent for all algorithms. For instance, in the population
of EUR, TagIt, EQ uniform, EQ MAF, and FastTagger yield
imputation accuracy of 0.94, 0.92, 0.92, and 0.89 in the MAF
bin (0.2:0.5], respectively, while the corresponding values in
the MAF bin (0.01:0.05] are 0.81, 0.76, 0.72, and 0.73.

B. Imputation coverage

Regarding imputation coverage, TagIt also achieved the
highest performances followed by EQ uniform, while the
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Fig. 2. Imputation accuracy curves of TagIt, FastTagger, EQ uniform, and EQ MAF measured by leave-one-out cross-validation. The x-axis shows various
MAF bins, and the y-axis shows the mean imputation accuracy of SNPs corresponding to each MAF bin in the x-axis.
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Fig. 3. Imputation coverage curves of TagIt, FastTagger, EQ uniform, and EQ MAF measured by leave-one-out cross-validation. The x-axis shows imputation
accuracy cutoffs, and the y-axis shows the proportion of SNP with equal or higher imputation accuracy corresponding cutoff in the x-axis.



TABLE I
IMPUTATION ACCURACIES OF TAGIT, FASTTAGGER, EQ UNIFORM, AND

EQ MAF IN VARIOUS MAF BINS, MEASURED BY LEAVE-ONE-OUT
CROSS-VALIDATION.

Population Method Minor allele frequency bin
(0.01:
0.05]

(0.05:
0.1]

(0.1:
0.2]

(0.2:
0.5] All

EAS TagIt 0.76 0.89 0.91 0.91 0.87
EAS EQ uniform 0.69 0.85 0.89 0.89 0.83
EAS EQ MAF 0.61 0.79 0.85 0.88 0.79
EAS FastTagger 0.77 0.81 0.85 0.86 0.83
EUR TagIt 0.81 0.91 0.94 0.94 0.90
EUR EQ uniform 0.76 0.89 0.92 0.92 0.87
EUR EQ MAF 0.72 0.86 0.90 0.92 0.85
EUR FastTagger 0.73 0.87 0.89 0.89 0.84
SAS TagIt 0.80 0.91 0.93 0.93 0.88
SAS EQ uniform 0.75 0.89 0.90 0.90 0.85
SAS EQ MAF 0.69 0.85 0.88 0.91 0.83
SAS FastTagger 0.74 0.86 0.87 0.87 0.83
AMR TagIt 0.81 0.91 0.93 0.93 0.88
AMR EQ uniform 0.77 0.89 0.91 0.92 0.86
AMR EQ MAF 0.71 0.86 0.90 0.92 0.83
AMR FastTagger 0.77 0.87 0.88 0.88 0.84

TABLE II
IMPUTATION COVERAGES OF TAGIT, FASTTAGGER, EQ UNIFORM, AND

EQ MAF BY VARIOUS IMPUTATION ACCURACY THRESHOLDS IN
PERCENTAGE, MEASURED BY LEAVE-ONE-OUT CROSS-VALIDATION.

Population Method Imputation accuracy threshold
0.9 0.85 0.8 0.75 0.7

EAS TagIt 64.61 76.2 82.62 86.43 88.73
EAS EQ uniform 54.63 66.73 74.52 79.38 82.63
EAS EQ MAF 42.13 54.6 64.11 71.2 76.3
EAS FastTagger 43.72 60.08 71.51 79.02 84.07
EUR TagIt 73.19 82.61 87.35 90.18 92.02
EUR EQ uniform 62.95 74.18 80.68 84.88 87.78
EUR EQ MAF 55.82 68.58 76.54 81.78 85.45
EUR FastTagger 57.71 68.83 75.56 80.01 83.13
SAS TagIt 69.36 79.51 85.12 88.43 90.57
SAS EQ uniform 59.27 71.03 78.07 82.49 85.52
SAS EQ MAF 51.17 63.63 72.1 77.92 82.09
SAS FastTagger 55.21 65.95 73.22 78.02 81.3
AMR TagIt 66.98 78.62 84.94 88.69 91.15
AMR EQ uniform 58.13 71.1 78.84 83.69 87.02
AMR EQ MAF 50.62 64.07 72.66 78.52 82.81
AMR FastTagger 54.23 66.89 74.87 80.18 83.85

TABLE III
RUNNING TIME OF TAGIT, FASTTAGGER, EQ UNIFORM, AND EQ MAF

TO PERFORM TAG SNP SELECTION IN CHROMOSOME 10 POPULATION
EAS, EUR, SAS, AND AMR; MEASURED BY CORE HOURS.

Method EAS EUR SAS AMR
TagIt 0.15 0.2 0.2 0.25
EQ uniform 0 0 0 0
EQ MAF 0.05 0.05 0.05 0.1
FastTagger 29 41 54 115

worst performers are interchanged between EQ MAF and
FastTagger, depending on population and imputation thresh-
olds. Details of imputation coverage is showed in Table II
and Figure 3. Taken the imputation accuracy threshold at 0.8
as an example, TagIt yields imputation coverage of 82.62%,
87.35%, 85.12%, and 84.94% in EAS, EUR, SAS, AMR
populations while the second-ranked tool, EQ uniform, gives
imputation coverage of 74.52%, 80.68%, 78.08%, and 78.84%

respectively. Using the same accuracy threshold, EQ MAF has
the poorest performance with coverage of 64.11%, 76.54%,
72.10%, and 72.66% coverage in four populations.

C. Running time

We measure the total CPU time of all methods for individual
datasets, which are reported in Table III. The time is calculated
from the time the methods start running until results are
produced. It covers all the steps including data processing and
tag SNP selection. As expected, FastTagger is the most time-
consuming method. Its running time is sustainability higher
than others that takes 29, 41, 54, and 115 hours to finish tag
SNP selection in EAS, EUR, SAS, and AMR respectively. In
contrast, EQ uniform, EQ MAF, and TagIt provide results in
a time of no more than a half-hour in all populations.

IV. DISCUSSION AND CONCLUSION

In this study, performance of tag SNP selection methods
are evaluated based on genome-wide imputation accuracy as
measured by mean imputed r2 at untyped sites rather than
pairwise LD. Imputation accuracy assessment using leave-
one-out cross-validation provides a real-world estimation of
genomic coverage, the golden standard assessment of SNP
array nowadays [5], [20]–[22]. We examined the performance
of two main strategies in SNP array design, LD-based tag
SNP selection and genomic-distance-based tag SNP selection,
by looking at four typical algorithms - TagIt, FastTagger,
EQ uniform, and EQ MAF [11], [23], [25], [28]. We pro-
vided a comprehensive evaluation based on the 1kGP high
coverage dataset [31]. Our results indicated that all assessed
algorithms are reasonable to use for imputation SNP array
design, they yielded high imputation accuracies and achieved
high imputation genomic coverages. It is also noticeable that
LD pairwise tag SNP selection strategy (TagIt) outperformed
the others. This strategy provided the best tag SNP selection
performance in terms of imputation accuracy and imputation
genomic coverage in all examined datasets. In addition, over-
optimization approaches for MAF (EQ MAF) and LD (Fast-
Tagger) have tended to provide poorer performance than the
naive approaches that uses pairwise LD and uniform assump-
tion. Finally, we provided a set of scripts for running the leave-
one-out cross-validation for tag SNP selection algorithms to
facilitate the design and evaluation of next-generation SNP
array platforms.
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de génotypages haute densité à partir de puces basse densité pour des
individus de race pure et croisés piétrain,” Journées Rec Porcine, vol. 47,
p. 1, 2015.

[10] X. Qiao, R. Su, Y. Wang, R. Wang, T. Yang, X. Li, W. Chen, S. He,
Y. Jiang, Q. Xu et al., “Genome-wide target enrichment-aided chip
design: a 66 k snp chip for cashmere goat,” Scientific reports, vol. 7,
no. 1, pp. 1–13, 2017.
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