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Abstract

Despite the rapid development of sequencing technology, single-nucleotide polymorphism (SNP) arrays are still the most cost-effective
genotyping solutions for large-scale genomic research and applications. Recent years have witnessed the rapid development of
numerous genotyping platforms of different sizes and designs, but population-specific platforms are still lacking, especially for those
in developing countries. SNP arrays designed for these countries should be cost-effective (small size), yet incorporate key information
needed to associate genotypes with traits. A key design principle for most current platforms is to improve genome-wide imputation so
that more SNPs not included in the array (imputed SNPs) can be predicted. However, current tag SNP selection methods mostly focus
on imputation accuracy and coverage, but not the functional content of the array. It is those functional SNPs that are most likely asso-
ciated with traits. Here, we propose LmTag, a novel method for tag SNP selection that not only improves imputation performance but
also prioritizes highly functional SNP markers. We apply LmTag on a wide range of populations using both public and in-house whole-
genome sequencing databases. Our results show that LmTag improved both functional marker prioritization and genome-wide impu-
tation accuracy compared to existing methods. This novel approach could contribute to the next generation genotyping arrays that
provide excellent imputation capability as well as facilitate array-based functional genetic studies. Such arrays are particularly suitable
for under-represented populations in developing countries or non-model species, where little genomics data are available while
investment in genome sequencing or high-density SNP arrays is limited. LmTag is available at: https://github.com/datngu/LmTag.

Keywords: tag SNP selection, SNP array design, linkage disequilibrium, beam search

Introduction
Single-nucleotide polymorphism (SNP) arrays and recent
technology whole-genome sequencing (WGS) have been
widely used in genomic research and applications.
Although WGS is attractive due to its ability to capture
all genetic variation in the genome, SNP arrays have been
the most widely used strategy due to several advantages
such as cost-effectiveness, reliability of the technology
and light computational requirement [1]. SNP arrays
still play important roles in Genome-wide association
studies (GWAS), which have facilitated the detection of
DNA variants associated with human complex traits,
including disease traits, leading to numerous proven
and potential translational applications towards new
diagnoses and therapeutics over the last decade [2].

However, due to the small number of SNPs that can
be included, array-based genomic studies often require
imputation to increase the number of variants for
association tests by predicting the genotypes at the SNPs
that are not directly genotyped in the study samples.
The performance of imputation is affected by three main
factors, including imputation algorithms [3], imputation
reference panels [4, 5] and the design of SNP arrays [6].

Available genomic studies have focused mainly on
European descent, accounting for approximately 79%
of all GWAS participants, while the overall European
population comprises about 16% of the total global
population [7, 8]. Given that the majority of human
functional genetic variants are population-specific and
rare [9, 10], the imbalance in current population genetic
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data resources implies a critical problem. Important
variants with low frequencies or completely absent in
European populations may be missed by GWAS discov-
eries so far [11]. Consequently, disease risk predictions,
which benefit the clinical arena, are currently restricted
in the European ancestry population [12]. This is a critical
issue, especially for the majority of the world population,
who are under-represented in genomic studies. These
under-represented populations include both minority
ethnic groups in high-income countries, and citizens of
low and middle-income countries [13]. This fact leads
to an urgent and unmet demand to develop and use
customized genotyping platforms for under represented
populations [1]. Indeed, population-specific genotyping
arrays such as the UK Biobank Axiom Array [14], the
Axiom-NL Array [15], the TWB Array [16], the Axiom
China Kadoorie Biobank Array [17], the Japonica and
Japonica NEO Arrays [18, 19], and the Axiom KoreanChip
[20] have been successfully implemented to facilitate
genomic studies in these populations.

To develop such arrays, various strategies to select tag
SNPs are employed. A tag SNP is a SNP that can repre-
sent a group of SNPs called a haplotype due to strong
associations between these neighboring alleles (known
as linkage disequilibrium, LD). Tag SNP selection meth-
ods can be classified into two main categories including
block-based [21–23], and LD-based approaches [24–27].
The former approach involves partitioning the whole
chromosome into blocks, often relying on a predefined
haplotype block structures or simply based on genomic
distance. For example, in the early generation of human
genotyping SNP array, tag SNPs were selected at intervals
of approximately each 5-kilobase with a minor allele
frequency of at least 5% [28]. This strategy has also been
widely adopted in animal genetics, commonly referred to
as the equidistance method [29, 30]. On the other hand,
the latter approach utilizes LDs among nearby SNPs to
find tag SNPs with a greedy approach to maximize LD
coverage [19, 27, 31]. A typical algorithm starts with
a set of targeted SNPs, then weighs each SNP candi-
date by the number of neighbor SNPs (within a specific
genomic distance) that have pairwise LD r2 greater than
or equal to a specific threshold, e.g., 0.8. The SNP with
the highest score is then selected, and the associated
SNPs are removed from the targeted set. These steps are
iterated until reaching the desired number of tag SNPs
or no more SNP satisfying the LD r2 threshold [24, 31]. In
addition, multi-marker LD approach [25, 32, 33], pairwise
LD hybrid tag SNP selection [26], cross-population prior-
itizing scheme [27] also aim to improve LD coverage and
imputation accuracy. Despite the efforts, these strategies
still have certain limitations. Firstly, it is unclear that
tag SNP selection approaches to maximize LD coverage
or genomic distance can provide the best imputation
accuracy performance, which is the golden standard of
SNP array assessment nowadays [6, 27]. Secondly, SNPs
on genotyping arrays are typically not causal variants
because they are chosen to be highly LD correlated with
neighboring SNPs to cover large genomic regions to allow

for imputing unmeasured SNPs, a common design prac-
tice in the greedy paradigm [34].

To address these challenges, we introduce a novel
method called LmTag, which facilitates the design of
functional-enrichment, imputation-aware, and populati
on-specific SNP arrays. Firstly, LmTag uses a robust
statistical modeling to systematically integrate LD
information, minor allele frequency (MAF) and physical
distance of SNPs into the imputation accuracy score
to improve tagging efficiency. Secondly, LmTag adapts
the beam search framework [35] to prioritize both
imputation scores and functional scores to solve the tag
SNP selection problem. We apply LmTag and comprehen-
sively compare it with common approaches of tag SNP
selection using a wide range of both public and in-house
genomics datasets. Our benchmarking results suggest
that LmTag improves both imputation performance and
prioritization of functional variants. Furthermore, we
show that tagging efficiency of tag SNP sets selected by
LmTag are sustainability higher than existing genotyping
arrays, indicating the potential improvements for future
genotyping platforms.

Materials and methods
Overview of LmTag pipeline
An overview of LmTag is presented in Figure 1. The
method includes three key steps: (i) Imputation accuracy
modeling, (ii) Functional scoring and (iii) Functional tag
SNP selection. In the first step, a theoretical array (set of
tag SNPs) is simulated, and imputation accuracy scores
of the corresponding tagged SNPs are estimated by leave-
one-out cross-validation (details in the next section).
A linear model is then employed to assess imputation
accuracy scores of tagged SNPs based on pairwise LD r2,
MAF of tag SNPs (those included in the array), MAF of
tagged SNPs (not included in the array), and distances
between tag SNPs and tagged SNPs. In the second step,
SNPs are functionally scored based on public databases
including the GWAS catalog [36], the ClinVar [37] and
the Combined Annotation-Dependent Depletion (CADD)
[38] to enrich functional variants in the array design.
Finally, parameters from the model are used to estimate
imputation accuracy score for each SNP. These estimated
scores, together with the functional ranking of SNPs, are
then used in functional-enrichment tag SNP selection by
the beam search algorithm with beam width parameter
K [35]. Further details are described in the next sections.

Imputation accuracy modeling
Our aim is to combine systematically information from
both pairwise LD r2, MAF and genomic distance to
improve imputation accuracy of tag SNP selection. To this
end, we model imputation accuracy as a linear model:

r = β0 + β1.l + β2.mtag + β3.mtagged + β4.d, (1)

where r is imputation r2 (described later), l is LD r2

between tag SNP and tagged SNP, (l ∈ (0 : 1]), mtag is MAF
of tag SNP, (mtag ∈ (0 : 0.5]), mtagged is MAF of tagged SNP
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Figure 1. Overview of LmTag. (i) Imputation accuracy modeling, this includes modeling imputation accuracy metric as a function of LDs, MAFs and
genomic distances. (ii) Functional scoring, this includes steps of weighting functional scores of SNPs based on public databases. (iii) Functional tag SNP
selection, imputation capability of each SNP is represented as triangles while functional scores are showed in the lower rectangles. When K = 1, the
beam search algorithm becomes the best-first search that select SNP with the highest estimated imputation performance - colored bold red triangles.
When K > 1, the algorithm selects top K SNPs with the highest estimated imputation performances – colored light pink triangles, the functional scores
in these SNPs – colored light green is weighted to find the highest functional SNPs as tag SNPs – colored bold red triangles.

(mtagged ∈ (0 : 0.5]), d is genomic distance between tag SNP
and tagged SNP, (d ∈ N).

In this model, untyped SNPs are assumed to be
tagged by the highest LD SNP in the tag SNP set. The
relationships among pairwise LD r2, MAF and genomic

distance are established by simulation. In detail, a
theoretical naive SNP array is created followed by impu-
tation accuracy scores computation for corresponding
tagged SNPs. The corresponding information including
LD and genomic distance are then extracted before being
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used to estimate parameters for the linear model. It
is noted that more complicated models may provide
better performance. However, these improvements are
marginal. We opt to use the linear model due to its
efficiency, simplicity and explainability, and set it as
the default setting. Further details of model selection
and optimization can be found in the supplementary
document.

Because LmTag employs the greedy framework in tag
SNP selection, the number of tag SNPs selected by LmTag
is expected to be comparable with the number of tag
SNP selected by standard greedy algorithms such as TagIt
when they become saturated. Theoretically, the model
parameters are sensitive with the size of the simulated
array. Thus, we run a standard greedy tag SNP selection
algorithm, TagIt (https://github.com/statgen/TagIt) [31],
with default parameters (LD r2 threshold is 0.8, and
MAF threshold is 0.01) to estimate scaffold sizes k for
each chromosome to make the simulation as realistic as
possible. We denote the input containing n SNPs as A =
{SNP1, SNP2, SNP3, ..., SNPn}. We then sort them by their
genomic positions and uniformly sub-sample k SNPs as
a tag SNP set T = {SNP1, SNP2, ..., SNPk}. The remain-
ing n − k SNPs are labeled as a tagged SNP set G =
{SNPk+1, SNPk+2, ..., SNPn}. Imputation accuracy scores for
tagged SNPs ∈ G are computed with a leave-one-out
internal validation approach [6, 27]. Specifically, imputa-
tion is performed individually for each sample with the
exclusion of itself from the reference panel with Mini-
mac4 v1.0.2 [3]. Tag SNPs ∈ T are denoted as ‘genotyped’
and the sites ∈ G are set as missing. The imputation
accuracy ri for each tagged SNPi ∈ G is represented by
the concordance rate, e.g., squared Pearson’s correlation
coefficient which we term imputation r2 to make a dis-
tinction from LD r2, between imputed genotype dosages
in (0-2) and masked ground truth genotypes in (0, 1, 2).

Pairwise LDs are calculated using Plink v1.9 within a
maximum genomic distance of 1 megabase (MB), and
minimum LD r2 cutoff of 0.2 [39]. Allele frequencies
are computed and extracted with bcftools v1.10.2
(https://github.com/samtools/bcftools). To simplify the
linear model, we assume that each tagged SNP’s
genotype is inferred based on the sole tag SNP that has
the highest LD r2. Thus, we find the best tag SNPi ∈ T for
each SNPj ∈ G that has the most LD with the targeted
tag SNPj to extract relevant information including LD
pairwise lij, MAF mi, mj, and genomic distance dij. Together
with imputation scores ri estimated from the previous
step, these data are then used to estimate parameters
for the linear model (1).

SNP prioritization with high-functional scores
In general, markers are functionally ranked based on bio-
logical evidence and genome-wide predicted functional
scores simultaneously. In the current implementation,
SNP positions matched to the GWAS catalog and the Clin-
Var databases [36, 37] are functionally ranked as in the
highest score category. For non-biological evidence SNPs,

we use CADD scores [38] to prioritize functional SNPs to
make sure all SNPs are functionally scored. The CADD
scoring system is a widely used metric that effectively
prioritizes causal variants in genetic analyses, especially
in highly penetrant contributors to severe Mendelian
disorders. CADD integrates more than 60 genomic
features based on DNA sequence, for examples gene
model annotations, evolutionary constraint, epigenetic
measurements and functional predictors into a single
score by a machine learning model. In addition to the
comprehensive use of genomic features, two other key
advantages of the CADD model include the genome-wide
estimation and the interpretability for each estimate.
CADD scores are computed for all approximately 9
billion possible single-nucleotide variants (SNV) across
the human genome. For interpretability, the scores are
transformed into ‘PHRED-scaled’ to provide a relative
ranking system between SNVs at genome-wide coverage.
Regardless of the details of the annotation set and model
parameters, CADD scores can be interpreted simply as
follows: a scaled score of 10 or greater equivalent to a
raw score in the top 10% of all possible reference genome
SNVs, and a score of 20 or greater indicates a raw score
in the top 1%, and so on [40].

Functional tag SNP selection
Similar to most LD based tag SNP selection methods [24–
26, 31, 41], we employ a greedy approach for computa-
tional efficiency. However, there are two main differences
in our algorithm. Firstly, we use estimated pairwise impu-
tation r2 scores for ranking SNP candidates instead of
using pairwise LD r2 like conventional methods. Specif-
ically, for each pair of SNPs, imputation score r2 for each
SNP is estimated independently by using coefficients
derived from the established linear model and the cor-
responding LD r2, it’s MAF, mate’s MAF, and genomic
distance between the two SNPs. Given two SNPs, SNPi,
and SNPj with LD r2 (SNPi, SNPj) = lij, MAF SNPi = mi, MAF
SNPj = mj, and genomic distance (SNPi, SNPj) = dij. Their
estimated imputation scores r̂i, and r̂j are calculated as:

• r̂i = β̂0 + β̂1.lij + β̂2.mi + β̂3.mj + β̂4.dij

• r̂j = β̂0 + β̂1.lij + β̂2.mj + β̂3.mi + β̂4.dij

where β̂0, β̂1, β̂2, β̂3, and β̂4 are estimated from the linear
model (1). Secondly, LmTag employs the beam search
[35] instead of the best-first search strategy like other
algorithms. The main advantages of the beam search
is allowing us to prioritize highly functional SNPs. In
details, we introduce a tuning parameter K in the algo-
rithm to select tag SNPs with high functional scores.
LmTag algorithm starts with an empty tag SNP set T,
a tagged SNP set G, and n input SNP candidates A =
{SNP1, SNP2, SNP3, ..., SNPn}. For each iteration, the algo-
rithm includes two main steps as follows:

1. Imputation scoring.
Each SNPi ∈ A is scored as si, which is sum of esti-
mated imputation r2 r̂j of all its neighboring SNPj ∈ A
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given that pairwise LD r2 lij is equal to or greater than
a specific cut-off c:

si =
n∑

j=1

r̂j; If lij ≥ c, and j �= i. (2)

2. Tag SNP selection with beam search.
Our approach considers the functional term of
each marker in tag SNP selection by adapting
the beam search algorithm [35]. In brief, beam
search is a heuristic searching algorithm used to
solve combinatorial optimization problems. This
approach employs a truncated branch-and-bound
searching procedure, where only the most promising
K nodes (instead of all nodes) at each level of the
search tree are evaluated and retained for further
branching; K is the so-called beam width [42]. We
consider top K SNPs with highest imputation scores
as a candidate list of tag SNPs. Then, the search
branching is extended to functional scores, i.e. the
SNP with the highest functional score in this list
is subsequently chosen as a tag SNPt. This SNP
is subsequently moved from the candidate set A
into tag SNP set T, and SNPt’s neighboring SNPs
(satisfying pairwise LD r2 cut-off) are moved into
tagged SNP set G. Overall, both the selected tag SNP
and its associated tagged SNPs are removed from
the candidate set A.

These steps are iterated until either A is empty or no
pair (SNPi, SNPj) ∈ A satisfying the condition lij ≥ c could
be found. Finally, the tag SNP set A, and their associated
tagged SNP set G are exported.

Datasets
We evaluate the performance of LmTag in both in-
house generated and public datasets, including data
from the 1000 Vietnamese Genomes Project (1KVG) pilot
phase and data of three super populations from the
1000 Genomes Project samples re-sequenced by New
York Genome Center (1KGP-NYGC) [43]. The genomic
data of the 1KVG pilot phase were obtained from 504
unrelated Vietnamese population individuals (VNP),
including 208 males and 296 females. Their genomes
were sequenced at coverage 30x with 150bp paired-end
reads using an Illumina NovaSeq 6000 system. Variant
calling was performed using the DRAGEN pipeline [44]
with the GRCh38 patch release 13 reference genome [45].
Quality check and filtering were performed with bcftools
v1.10.2, and phasing was performed with SHAPEIT v4.1.3
to obtain the phased genotypes in Variant Call Format
(VCF) [46]. Phased genotype data in VCF format of 1KGP
NYGC high coverage are obtained from The International
Genome Sample Resource (IGSR) data portal. We include
only unrelated samples belonging to East Asian (EAS),
European (EUR), and South Asian (SAS) in the analysis.
These samples are assigned to their super population
according to IGSR’s annotation. All genomic data are

reprocessed with bcftools v1.10.2 to keep only biallelic
SNP with MAF > 1%.

CADD v1.6 database [40], release version 2021-07-08 of
the GWAS catalog [36], and the ClinVar database [37] are
downloaded and filtered to obtain functional scores for
each population. Finally, processed genomic data of four
populations and their associated functional annotations
are used in our analysis, including VNP, EAS, EUR and
SAS, which comprise 504, 504, 503 and 489 individuals
respectively. Details of datasets can be found in Table 1.
Due to limited computational resources, our analyses are
performed on chromosome 10, but the results should be
generalizable to all chromosomes.

Performance evaluation
We compare LmTag against commonly used methods
in SNP array design including TagIt [31], FastTagger
[25], EQ_uniform (uniform tag SNP selection based on
genomic distances) [29] and EQ_MAF (MAF-optimized
tag SNP selection based on genomic distances) [30]
using various metrics including imputation accuracy
and functional enrichment. We also compare imputation
accuracies of tag SNPs selected by LmTag against those of
tag SNP sets from various commercial genotyping arrays.
By this way, we explore potential applications of LmTag
in designing genotyping arrays.

In terms of current methods for genotyping array
design, the first two methods optimize imputation
accuracy by maximizing LD while the later methods
select makers based on the equidistant principle. The
distance-based methods are widely used in animal SNP
array designs that involve dividing chromosomes into
certain intervals with equal genomic length [29, 47, 48]
and further optimized toward MAF [30, 49, 50]. For each
interval, the SNP with the highest MAF is selected as
representative of all SNPs in the interval [30]. TagIt is a
typical greedy algorithm selecting tag SNPs based on
pairwise LD information widely used in human SNP
array designs [19, 27, 31]. Meanwhile, FastTagger is a
fast implementation of the multi-marker LD approach,
which reduces the number of tag SNPs selected while still
maintaining high genomic coverage. In brief, the multi-
marker LD approach methods find association rules of
one SNP with multiple SNPs, termed multi-marker r2

statistics, and use this information to find tag SNPs [25,
33, 51]. Details on comparing these methods can be found
in previous reports [52].

Evaluation metrics are based on imputation accuracy
and functional prioritizing. Imputation accuracy is
measured as squared Pearson’s correlation of imputed
dosages estimated through a leave-one-out internal
validation and the ‘true genotypes.’ In details, selected
tag SNPs are denoted as ‘genotyped,’ and other sites
are set as missing. For each SNP, squared Pearson’s
correlation is calculated from imputation ‘estimated
dosages’ (0–2) to the ‘true genotypes’ (0,1,2) in the
original VCF file [6, 26, 27]. An overall imputation value
is defined as mean imputation r2 of all markers in the
population. Functional prioritizing is evaluated based
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Table 1. Datasets are used in this study

Populations Number of samples Total markers GWAS markers ClinVar markers

VNP 504 382 700 5064 1590
EAS 504 405 234 5160 1617
SAS 489 486 024 5868 1876
EUR 503 456 166 6168 1814

on CADD scores and their corresponding percentiles
among all SNPs, and the relative proportion of GWAS
and ClinVar markers which is defined by the number of
GWAS and ClinVar markers in the tag SNP sets over their
corresponding number in the examined populations.
These parameters are defined as follow:

P = (1 − 10−(
Q
10 )

) × 100, (3)

pg = ng

Ng
× 100, (4)

and

pc = nc

Nc
× 100; (5)

where P is percentile ranking of CADD score; Q is its
original scores in ‘PHRED-scaled’; Ng and Nc are total
GWAS and ClinVar markers in each populations; ng, nc

are number of GWAS and ClinVar markers in selected tag
SNP sets; and pg, pc are their corresponding proportions.

For comparison between methods, the LD cutoff is
set at 0.8 in LD-based methods, including LmTag, TagIt
and FastTagger. FastTagger requires further LD settings
for min_r2_2, and min_r2_3 that are set as 0.9, and 0.95
respectively, as recommended by the authors. LmTag is
further ran with several K values varying from 1 to 2000
to examine the relationship between imputation accu-
racy and functional SNP inclusion. Functional scores of
selected tag SNPs by the other tag SNP selection methods
are also computed for comparison. To enable a fair and
comprehensive evaluation, tag SNPs are selected corre-
sponding to multiple cutoffs ranging from 8000 to 32 000
in all populations.

Results
LmTag improves functional enrichment in tag
SNP selection
The summary results of functional enrichment in tag
SNP selection of LmTag, EQ_uniform, EQ_MAF, TagIt,
FastTagger and baseline (mean functional score and
proportion of biological evidenced markers in all SNPs
in the population) are shown in Figure 2, 3, and Table
S.2, S.3. LmTag is evaluated with various beam width
parameters K=1, 10, 20, 30, 50, 100, 200, 500, 1000, 1500
and 2000 denoted as LmTag_K1, LmTag_K10, LmTag_K30,
LmTag_K50, LmTag_K100, LmTag_K200, LmTag_K500,
LmTag_K1000, LmTag_K1500 and LmTag_K2000, respec-
tively. The results are collected from all four populations
EAS, EUR, SAS and VNP under the 32 000 tag SNPs setting.

In general, LmTag shows a significant improvement
in functional prioritization with almost zero imputa-
tion performance trade-off. Particularly, in comparison
with the baseline and other methods, LmTag obtains
significant improvements with approximately 2-folds (at
K=200), and 3-folds (at K = 2000) in terms of selection
GWAS and ClinVar markers; and yet increases averagely
15–17%, and 23–27% CADD score percentile ranking in
term of selection population-wide variants as tag SNPs
with K setting at 200, and 2000 respectively.

When K is set as 1, LmTag becomes a standard
greedy algorithm with the ‘best-first’ search approach,
i.e. no optimization is applied for selecting functional
variants. In this setting, mean CADD scores, mean CADD
percentiles, proportions of GWAS and ClinVar markers
selected by LmTag are comparable with the baseline and
other methods, as expected. The mean CADD scores
of tag SNPs selected by LmTag_K1 vary from 2.92 to
2.96 across examined populations, and are in the same
range with the baseline, which varies from 2.91 to 2.96.
Other methods also yield comparable performances with
LmTag_K1, ranging from 2.89 to 3.04. Conversion from
‘PHRED-scaled’ score into percentile scale shows mean
CADD score percentile of LmTag_K1 and the others are
equivalent with the rank from 37.97 to 39.34. In other
words, under the setting of no optimization for functional
SNPs, CADD scores / percentiles of tag SNP distribute
equivalently regardless of the method of choice. Simi-
larly, when considering prioritization of markers using
biological evidence databases, the proportions of GWAS
and ClinVar marker selected by LmTag_K1, and other
methods are mostly comparable to the baseline except
for GWAS marker proportions of EQ_MAF. Under the
baseline scenario, the expected proportions of GWAS
and ClinVar in 32 000 tag SNPs are 7.90%, 7.01%, 6.58%
and 8.36% in EAS, EUR, SAS and VNP, respectively. The
corresponding ranges for LmTag_K1, EQ_uniform, TagIt
and FastTagger are 7.68–9.34%, 6.58–8.36%, 9.34–10.50%,
respectively. Notably, the EQ_MAF method selects slightly
higher proportions of ClinVar markers, from 8.74 to
11.45%, and significantly more GWAS markers ranging
from 15.26 to 16.17% that are possibly explained by the
detection power bias towards high-frequency variants in
both clinical and association studies.

When the value of K increases, as expected, a clear
improvement of functional enrichment is shown as
detailed in shown in Figure 2, 3, and Table S.2, S.3.
Consistently, CADD scores and proportions of GWAS
and ClinVar show a strong positive correlation with the
increase of K, while the overall imputation accuracies
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Figure 2. Mean percentile of CADD scores of tag SNP selected by LmTag (with K=1, 10, 20, 30, 50, 100, 200, 500, 1000, 1500 and 2000), EQ_uniform, EQ_MAF,
TagIt and FastTagger. Baseline shows mean percentile of CADD scores of all input markers (32 000 SNPs) in each population.

experience very small changes as shown in Table S.4.
For example, when K setting changes from 1 to 200,
the overall imputation accuracy of the VNP reduces by
only 0.03% (from 89.83% to 89.80%) while the functional
scores of tag SNPs gain significant improvements. Mean
CADD score percentile increases by 18% (55.20% at
K=200 versus 37.20% at K=1). In the meantime, the
GWAS and ClinVar proportions covered by 32 000 tag
SNP increase more than 2-folds, both from 8.36% to
18.13%, and 18.05%, respectively. It is noted that, mean
CADD score percentile values are computed by taking
the average percentile ranks of all selected tag SNPs
and not by directly converting from the mean of CADD
‘PHRED-scaled’ scores. When the K value is set extremely
high at 2000, the functional score improvements are
continued with lower rates to 62.37, 25.55 and 19.78%
for mean CADD score percentile, GWAS and ClinVar
proportions respectively. However, there are trade-offs
in terms of imputation accuracy and computational
time. In comparison to K=200, the mean imputation
accuracies reduce 0.05–0.09% and computational cost
increase linearly by 10 times in responses to the search
spaces (0.6–1.17 hours when K=200, and 5.92–10.51 hours

when K=2000) in the four examined populations. Details
of computation time and overall imputation accuracy
changes of all populations are shown in Table S.4, S.9
and visualized in Figure S.3. Taken all together, we
recommend the compromised setting of K in the range
of 200–500 to obtain optimization for both imputation
accuracy, functional scores and computational time.

LmTag demonstrates superior tagging efficiency
Regarding imputation performance, LmTag outperforms
other methods in both imputation accuracy and imputa-
tion coverage. The K parameter used in this comparison
is 200, while the number of tag SNPs is set at various
cutoffs. Regarding imputation accuracy, LmTag is the
top performer, followed by TagIt, and EQ_uniform while
the worst performers are interchanged between EQ_MAF
and FastTagger depending on population as reported in
Table S.5, and shown in Figure 4. At the cutoff of 32 000,
performance differences are substantially large between
LmTag against EQ_uniform, EQ_MAF, and FastTagger but
smaller against TagIt. For example, in the EAS population,
LmTag obtains 87.19% overall imputation accuracy com-
pared with 86.29%, 82.51%, 82.33%, and, 78.10% achieved
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Figure 3. Percentages of GWAS and ClinVar makers covered by 32 000 tag SNPs selected by LmTag (with K=1, 10, 20, 30, 50, 100, 200, 500, 1000, 1500 and
2000), EQ_uniform, EQ_MAF, TagIt and FastTagger over the total number of GWAS and ClinVar makers in each population. Baseline shows percentages
of GWAS and ClinVar markers covered over the total number of GWAS and ClinVar makers in each population corresponding 32000 tag SNP scaffold.

by TagIt, EQ_uniform, FastTagger and EQ_MAF, respec-
tively. The same trend is also observed in EUR, SAS and
VNP with 88.50%, 86.50% and 89.80% imputation accu-
racies achieved by LmTag_200. In terms of imputation
coverage, LmTag also produces the highest performance
as showed in Figure S.1. Taking imputation r2 threshold
of 80% as an example, LmTag yields the imputation
coverage of 83.65%, 85.25%, 81.66% and 87.81% in EAS,
EUR, SAS and VNP while the second-ranked performer
obtains 82.11%, 84.08%, 80.13% and 87.04% respectively.

To examine potential effects of the number of selected
tag SNPs on imputation accuracy and imputation cov-
erage, we further evaluate overall imputation accuracy
across different scaffolds by selecting top-ranked SNPs
from each population with various cutoffs: 32 000, 28
000, 24 000, 20 000, 16 000, 12 000 and 8000. Details of
overall imputation accuracies are reported in Table S.5.
We observe that the imputation accuracy and imputation
coverage increase in response to the increased number
of tag SNPs selected. However, the relationship is not
linear as shown in Figure 4 and Figure S.1. Nevertheless,
LmTag consistently outperforms other methods across
all settings. In general, the increasing rates of imputation

accuracy and imputation coverage are lower when the
numbers of tag SNP is high. In other words, when the
scaffolds of the SNP array contain a large enough num-
ber of SNPs, adding more tag SNPs do not significantly
improve imputation accuracy and imputation coverage
compared to those with small scaffolds. For example,
adding 4000 tag SNPs at 12 000 tag SNPs scaffold yield
approximately 8% improvement in imputation accuracy
compared to the scaffolds of 8000 SNPs regardless of the
method of choice. Meanwhile, increasing 4000 SNPs to
the scaffold of 28 000 results in less than 2% improve-
ment in imputation accuracy. Interestingly, we observe
that imputation coverages of all methods dramatically
change in response to number of tag SNPs. For exam-
ple, LmTagK_200 obtains more than 80% coverage with
imputation cutoff at 80% at 32 000 tag SNP. The coverage
reduces significantly to 50–60% when number of tag
SNPs is 8000, and even lower for EQ_MAF to 18–25%.

LmTag helps improve current genotyping arrays
To further explore potential applications of LmTag in
designing genotyping arrays. We also compare impu-
tation performances of tag SNPs selected by LmTag
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Figure 4. Overall imputation accuracies (mean imputation r2 of all markers) for each population corresponding to multiple cutoffs ranging from 8000
to 32 000 tag SNPs selected by LmTag (with K = 200 ), EQ_uniform, EQ_MAF, TagIt and FastTagger.

(28 000, and 32 000 tag SNPs scaffolds, with K=200)
against tag SNP sets from various genotyping arrays
with sizes ranging from 30 710 to 49 191 tag SNPs in
all populations. In this setting, fewer SNPs are used for
LmTag compared to other arrays, as shown in Table
S.1. The compared arrays include widely used arrays
including Genome-Wide Human SNP Array 6.0, Axiom
Genome-Wide ASI, Axiom Genome-Wide EUR, Infinium
Global Screening Array v3.0; and recently developed
arrays such as Axiom Precision Medicine Diversity
Array, Axiom Precision Medicine Research Array; and
also customized-population-specific arrays including
Axiom UK Biobank Array, Axiom Japonica Array NEO.
Manifests of arrays are downloaded from respective
manufacturers’ websites. Details of tested arrays and
their corresponding number of tag SNP in chromosome
10 are reported in Table S.1. Tag SNPs in chromosome
10 are then extracted and harmonized to the UCSC hg38
reference genome coordinate with CrossMap v0.2.6 if
lifted over is required to obtain final tag SNP sets [53].
Imputation performances are estimated through leave-
one-out cross-validation as described previously.

The comparison yields results as shown in Table S.6,
and Figure S.2. In general, LmTag’s tag SNP sets out-
perform all compared array tag SNP sets. At 32 000 tag
SNP scaffold, LmTag achieves 87.19%, 88.50%, 86.50% and

89.80% overall imputation accuracies in EUR, EAS, SAS
and VNP, respectively, while the corresponding perfor-
mances at 28 000 tag SNPs scaffold are 86.03%, 87.60%,
85.30% and 88.91%. We also observe that population-
specific optimization and size of the tag SNP sets in the
arrays are two main factors affecting imputation per-
formances. For instance, the recently developed Axiom
Japonica Array NEO [19] and the Axiom UK Biobank Array
[14] are the best performers in the EAS and EUR popula-
tions with 84.70%, and 87.24% overall imputation accura-
cies, respectively. Besides, small size global optimization
arrays such as the Infinium Global Screening Array v3.0
(30,710 tag SNPs in chromosome 10) shows the poorest
performances across populations with 78.35%, 83.15%,
77.77%, and 82.81% overall imputation accuracies in EUR,
EAS, SAS, and VNP, respectively. On the other hand, the
Genome-Wide Human SNP Array 6.0 (49 191 tag SNPs in
chromosome 10) obtains much higher performances of
81.40%, 84.64%, 82.40% and 85.69% for the same popula-
tions, respectively.

Overall, LmTag can offer higher performance genotyp-
ing arrays with less number of tag SNPs compared to
existing arrays. The imputation improvements vary from
9% compared to the Infinium Global Screening Array v3.0
in the EAS population to 1.5% compared to Axiom UK
Biobank Array in the EUR population. Notably, for the
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VNP population, LmTag’s tag SNP sets specific for VNP
appears to improve the imputation coverage the most
compared to all other arrays.

Discussion and conclusions
Early genome-wide SNP arrays were usually designed by
selecting tag SNPs from reference panels of predomi-
nantly European population [54]. As a result, these arrays
often produce poorer performance in non-European pop-
ulations [54, 55]. Using customized, small-size SNP arrays
at population-specific levels has recently emerged as an
extremely cost-effective genotyping solution for under-
represented populations [1]. For small arrays, imputa-
tion capability is essential to increase the genotyping
coverage across the genome to capture as many DNA
variants as possible. In addition to imputation perfor-
mance, researchers also focus on the functional aspect
of tag SNPs that are used in SNP arrays, which can help
with fine mapping and increase the chance to detect
true causal variants associated with traits. A recent com-
parative study of genotyping SNP arrays [56] discussed
the importance of selecting markers based on biological-
evidence and CADD functional scores [40]. In this study,
we introduce a novel method, LmTag, that is optimized
for both imputation and inclusion of functional vari-
ants. We compare the performance of LmTag to current
widely used methods including EQ_uniform, EQ_MAF,
TagIt, and FastTagger; and tag SNP sets from various SNP
arrays. These methods and array designs are evaluated
across four different populations. The results show that
LmTag not only achieves higher imputation performance
than other approaches but also significantly enriches
the tag SNP set with functional variants. Furthermore,
results from our comparative analysis against existing
SNP arrays suggest that LmTag has a high potential for
designing new genotyping arrays, especially for under-
represented populations.

The improvement of tagging efficiency is mainly con-
tributed by the LmTag statistical model. Instead of uti-
lizing solely pairwise LD information as in conventional
methods such as TagIt, LmTag assesses the relationship
between imputation accuracy, mirror allele frequency,
pairwise LD and genomic distance, and then uses this
relationship to compute imputation scores for ranking
SNP candidates in tagging procedure. The model explains
from 26.31% up to 44.14% imputation accuracy, depend-
ing on the genetic structure of populations. In all cases,
the significant association of the model parameters with
imputation accuracies is found, although the effect sizes
vary across populations as shown in Table S.7. While
pairwise LD, MAF of both tag SNPs and tagged SNPs
positively correlate with imputation accuracy, genomic
distance showed the reverse trend.

Another advantage of LmTag is the implementation
of beam search that considers a secondary factor
in tag SNP selection that is the functional aspect of
variants by including both ClinVar, GWAS catalog, and

CADD databases simultaneously.. Besides genome-wide
imputation capability, the inclusion of likely functional
variants can enhance the value of genotyping SNP arrays
by producing key information on potential causal SNPs
underlying phenotypes. For example, the UK Biobank
Axiom Array [14], Japonica NEO Arrays [19] and the
Axiom KoreanChip [20] applied various selection criteria
to include likely functional markers in their array
designs. However, these functional SNPs were selected
independently from tag SNP selection procedure, i.e.
no prioritization of tag SNPs regarding their biological
functions was implemented. We introduce here an
approach of searching for tag SNPs that are also highly
functional. We believe that our proposed method will
facilitate the next generation genotyping arrays that
have high imputation performance as well as high
biological functional potential that would facilitate post
GWAS analysis such as statistical fine-mapping [34] and
the elucidation of biological mechanisms underlying
the relationship between genotypes and phenotypes.
Notably, in this study, we demonstrate how LmTag works
in human datasets and CADD scores are used as a metric
to approximate functional terms. Still, in practice, users
could apply the method in other species with any criteria
as long as they can provide a ranking scale for each SNP.
For example, in other non-model species where calling
confidence of the markers is a crucial factor, the method
can be adapted for marker quality scores instead of
functional scores, as long as a ranking system is provided.

Key Points

• Customizing genotyping array design is emerging as a
solution for under-represented populations in develop-
ing countries or non-model species.

• Imputation performance, and recently, functional con-
tent of the genotyping array are key design principles for
most current platforms.

• Current tag SNP selection methods focus only on impu-
tation accuracy and coverage, but not the functional
content of the array.

• We introduce LmTag, a novel tag SNP selection method
that improves both imputation performance and func-
tional content of the array designs.

• Such arrays are particularly suitable for under-
represented populations in developing countries or
non-model species where sequencing investment is
limited.

Availability of data and materials
The 1KGP-NYGC datasets are freely available at IGSR
data portal (https://www.internationalgenome.org). The
1KVG pilot phase datasets are available under agreement
at MASH data portal (https://genome.vinbigdata.org/).
LmTag is available for research only purpose at: https://
github.com/datngu/LmTag. Data and source codes to
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generate figures of this study are available at: https://
github.com/datngu/LmTag_data_analysis.
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