
Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject section

An integrative pipeline for circular RNA
quantitative trait locus discovery with application
in human T cells
Dat Thanh Nguyen 1,∗

1Centre for Integrative Genetics, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Molecular quantitative trait locus (QTL) mapping has proven to be a powerful approach for
prioritizing genetic regulatory variants and causal genes identified by Genome-wide association studies
(GWAS). Recently, this success has been extended to circular RNA (circRNA), a potential group of RNAs
that can serve as markers for the diagnosis, prognosis, or therapeutic targets of various human diseases.
However, a well-developed computational pipeline for circRNA QTL (circQTL) discovery is still lacking.
Results: We introduce an integrative method for circQTL mapping and implement it as an automated
pipeline based on Nextflow, named cscQTL. The proposed method has two main advantages. Firstly,
cscQTL improves the specificity by systematically combining outputs of multiple circRNA calling algorithms
to obtain highly confident circRNA annotations. Secondly, cscQTL improves the sensitivity by accurately
quantifying circRNA expression with the help of pseudo references. Compared to the single method
approach, cscQTL effectively identifies circQTLs with an increase of 20-100% circQTLs detected and
recovered all circQTLs that are highly supported by the single method approach. We apply cscQTL to a
dataset of human T cells and discover genetic variants that control the expression of 55 circRNAs. By
colocalization tests, we further identify circBACH2 and circYY1AP1 as potential candidates for immune
disease regulation.
Availability and Implementation: cscQTL is freely available at: https://github.com/datngu/cscQTL and
https://doi.org/10.5281/zenodo.7851982
Contact: n.dat@outlook.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Over the last two decades, genome-wide association studies (GWAS) have
successfully detected thousands of DNA variants associated with human
complex and disease traits (Visscher et al., 2017). Although the number
of detected trait-associated variants continues to grow, understanding the
underlying molecular mechanisms of most GWAS loci remains a challenge
due to the non-coding nature of 90% GWAS loci (Hindorff et al., 2009;
Tam et al., 2019). Among the possible approaches to tackle this challenge,
molecular quantitative trait locus (QTL) mapping of genetic variants with
intermediate molecular phenotypes, such as gene expression (eQTLs) and
splicing (sQTLs), has proven to be a powerful tool to prioritize genetic

regulatory variants and causal genes. Multiple studies have shown that
GWAS hits are enriched in significant eQTLs/sQTLs loci and regulatory
elements, suggesting gene regulation mechanisms of trait-associated DNA
variants (Nicolae et al., 2010; Maurano et al., 2012; Walker et al., 2019;
Consortium, 2020; Kerimov et al., 2021; Mu et al., 2021). Moreover,
the success of the QTL approach has recently expanded to include the
discovery of genetic variants controlling RNA editing (Li et al., 2022).

Circular RNA (circRNA) is a relatively young class of RNA molecules
characterized by covalently closed-loop structures without a 5’ cap or a
3’ poly (A) tail, formed by back-splicing events during RNA splicing
processes (Jeck and Sharpless, 2014; Chen et al., 2015; Meng et al., 2016).
To date, over a million circRNAs have been identified in humans and
other vertebrate species (Wu et al., 2020). Multiple studies showed that
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circRNAs exhibit unique expression patterns in tissues and developmental
stages and are more stable than other RNA types (Salzman et al., 2012,
2013; Wang et al., 2014). Functional studies suggested that circRNAs
play critical roles in various cellular processes and disease pathogenesis,
including acting as microRNA sponges (Hansen et al., 2013; Memczak
et al., 2013), regulating pre-mRNA splicing (Ashwal-Fluss et al., 2014),
and modulating innate immunity (Liu et al., 2019b). Indeed, a few pioneer
circRNA QTL (circQTL) studies shed the light on the impact of genetic
variants on circRNA expressions to regulatory mechanisms underlying
human complex diseases (Ahmed et al., 2019; Liu et al., 2019c; Mai et al.,
2022; Aherrahrou et al., 2023).

While eQTL is well established with multiple computational pipelines
and standardized protocols exist (Delaneau et al., 2017; Consortium, 2020;
Kerimov et al., 2021; Wang et al., 2021), circQTL mapping is still in
its early stages with no comprehensive computational pipeline available.
Current circQTL studies are commonly implemented by simply taking
the output of a single circRNA detection algorithm, and directly using
the BSJ counts as expression levels for QTL mapping (Ahmed et al.,
2019; Liu et al., 2019c; Mai et al., 2022; Aherrahrou et al., 2023).
This type of circQTL mapping is hereafter referred to as the single
method approach. Although it is easy to use, utilizing only one circRNA
calling method implies certain limitations. Firstly, circRNA detection
still suffers from a certain amount of false positives regardless of the
efforts of state-of-the-art circRNA calling methods (Zhang et al., 2016;
Gao et al., 2018; Nguyen et al., 2021). Secondly, circRNA detection
exhibits little agreement between calling tools that implies the potential
divergence results in circQTL downstream analyses (Szabo and Salzman,
2016; Hansen et al., 2015; Zeng et al., 2017; Hansen, 2018).

To address these issues, we develop an integrative pipeline called
cscQTL to systematical combine circRNA output from different tools
for circQTL analysis by a re-quantification approach. Compared to the
single method circQTL approach, cscQTL identifies more circQTLs and
provides more coherence results. We implement cscQTL as an automated,
reproducible, and scalable pipeline based on Nextflow (Di Tommaso
et al., 2017). By applying cscQTL, we find genetic variants controlling
expressions of 55 circRNAs in human T cells and identify circBACH2
and circYY1AP1 as potential circRNAs for immune disease regulation by
colocalization tests.

2 Pipeline implementation
Motivated by previous studies demonstrating that combining multiple
circRNA calling tools and re-quantification can improve consistency
in circRNA calling and downstream differential expression analyses
(Hansen, 2018; Zhang et al., 2020), we propose an integrative
pipeline called cscQTL (consensus-based circRNA QTL mapping) to
address these challenges. Firstly, cscQTL improves the specificity
by combining circRNA inputs from three high-accuracy circRNA
identification algorithms. Secondly, cscQTL implements re-mapping and
quantification procedures to provide accurate quantification of circRNAs.
Finally, cscQTL is implemented as a non-stop pipeline (from circRNA
detection, and genotyping data quality control to colocalization analysis)
using Nextflow (Di Tommaso et al., 2017), which enables reproducible
and scalable circQTL analyses in an automatic and user-friendly manner.

An overview of cscQTL is presented in Fig 1 A. First, RNA-seq (ribo-
minus) data is used for circRNA identification by Circall, CIRI2, and
CIRCexplorer2, with specific aligners allocated based on the authors’
suggested parameters. The detected circRNA candidates are harmonized
to obtain a similar format before consensus-based filtering to obtain high-
quality BSJ sites. In this implementation, circRNA candidates with >=

2 BSJ reads in at least one sample are kept before consensus filtering
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Fig. 1. Overview of the cscQTL pipeline. A) Workflow of circQTL mapping. CircRNAs
are first identified by Circall, CIRCexplorer2, and CIRI2. Then, cscQTL applies
consensus-based filtering to obtain high-quality circRNA candidates before quantifying
by re-alignment of RNA-seq reads against the pseudo circRNA references; circRNA
expressions then go through scaling, quantile-quantile normalization before CircQTL
mapping and colocalization tests. B) The construction of pseudo circRNA references.
Based on circRNA annotations detected by circRNA calling algorithms, a pseudo circRNA
reference is generated by joining 149 bases of the upstream sequences of the end positions
with 149 bases of the downstream sequences of the start positions. It is noted the pseudo
circRNA reference is not present in the corresponding linear form.

with different cutoffs of 1, 2, and 3 supporting methods. To accurately
quantify the expression level of circRNAs and filter false-positive BSJ
reads, reads that are fully mapped to the linear transcripts are discarded, and
quantification is performed by counting the number of fragments mapped
to pseudo circRNA references generated by concatenating 149 bases of the
upstream sequences of the end positions with 149 bases of the downstream
sequences of the start positions (Fig 1 B). Quasi-mapping is used for
these alignment steps to ensure computational efficiency (Srivastava
et al., 2016). Since only highly confident circRNAs are considered in
the quantification, a loose filtering criterion is applied, i.e., filtering is
applied with only one condition that the shorter piece of the read must
cover the junction break point with at least 7 bases to obtain the counting
matrix. At the same time, input VCF genotype data, and metadata are
also prepossessed. After that, the pipeline performs a series of processing
steps including population filtering, z-score scaling, quantile-quantile (Q-
Q) normalization, and covariate analyses with PEER (Stegle et al., 2012)
before performing QTL mapping with FastQTL (Ongen et al., 2016) using
the adaptive permutation scheme, and accounting for feature level multiple
testing by the q-value procedure (Storey and Tibshirani, 2003). Finally, the
detected circQTLs are tested for colocalization with GWAS loci using
COLOC (Hormozdiari et al., 2016). Further detailed descriptions are
available in the supplementary material and method documents.

3 Application
To illustrate the efficiency of cscQTL, we apply the pipeline with different
consensus cutoffs of 1, 2, and 3 denoted as cscQTL_1, cscQTL_2, and
cscQTL_3 respectively, and compare them against the single method
QTL approach that performs circQTL mapping by directly use circRNA
quantification from a single circRNA calling method as implemented
with Circall, CIRI2, and CIRCexplorer2 respectively. The comparison is
performed using a publicly available dataset of 40 individuals with matched
genotype and ribo-minus RNA-seq data (Chen et al., 2020) with uniform
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Fig. 2. Result overview. A). The number of eCircRNAs detected by Circall, CIRCexplorer2, CIRI, cscQTL (tested circRNAs are supported by at least 1, 2, and 3 circRNA detection
algorithms corresponding to cscQTL_1, cscQTL_2, and cscQTL_3), BOVINE-circQTL and its components including BV_CIRI2, BV_CIRCexplorer, and BV_circRNA_finder. cscQTL
results are shown as a breakdown of different eCircRNA classes that are supported by 3, 2, and 1 single methods and cscQTL-specific eCircRNAs. B). Visualization of a T1D GWAS locus
associated with circBACH2 (6:90206569:90271941).

data processing procedures as described in detail in the supplementary
material and method documents. Since we do not know the ground truth of
genetic variants controlling circRNA expressions. We consider the result of
the single method circQTL mapping approach as the baseline for evaluating
the concordance and the number of eCircQTL called.

With the single method QTL approach, a total of 71 distinct eCircRNAs
(circRNAs whose expression levels are associated with at least one genetic
variant) are detected under Storey’s q-value < 0.05 procedure (Storey
and Tibshirani, 2003). Among these, 46 were identified by Circall, 41 by
CIRI2, and 15 by CIRCexplorer2. Less than 10% (7/71) of the detected
eCircRNAs are supported by all three algorithms, and approximately one-
third (24/71) is supported by at least two methods, as shown in Fig S.1.
These results indeed indicate limitations in both sensitivity and specificity
of the single method circQTL mapping approach.

Regarding cscQTL, the number of eCircRNAs detected is significantly
higher than the single method approach as shown in Fig 2 A. At the
loosest setting (consensus cutoffs of 1), cscQTL detected a total of 94
unique eCircRNAs. The corresponding numbers are 61, and 55 for the
setting of 2, and 3 that cscQTL considers circRNA candidates supported

by at least 2 or 3 methods by either Circall, CIRI2, and CIRCexplorer2
for re-quantification. Importantly, cscQTL results are highly concordant
with the single method circQTL mapping. For instance, 40 out of 71
eCircQTL identified all three single methods are recalled by cscQTL_3.
The corresponding number of cscQTL_2 and cscQTL_1 are 41 and 51 out
of 71. Furthermore, all 24 highly confident eCircRNAs that are identified
by at least 2 single methods are showing up in all consensus settings.

To further validate the new method, we conduct a comparison between
cscQTL and another circQTL approach implemented in BOVINE-
circQTL (available at https://github.com/luffy563/bovine_circQTL).
Briefly, BOVINE-circQTL employs multiple tools for circRNA
detection and conducts circRNA expression calibration using CIRIquant
(Zhang et al., 2020) prior to QTL mapping for each circRNA
tool. Detailed information regarding this comparison is provided in
the supplementary documents. While BOVINE-circQTL successfully
enhances the performance of individual methods, such as CIRCexplorer2,
as demonstrated in Fig 2 A and Fig S.2, it’s worth noting that the total
number of eCircRNAs jointly identified by BOVINE-circQTL CIRI2
(BV_CIRI2), BOVINE-circQTL CIRCexplorer2 (BV_CIRCexplorer2),
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and BOVINE-circQTL circRNA_finder (BV_circRNA_finder) is still
less than cscQTL with 52 compared to 55 eCircRNAs in cscQTL_3.
Furthermore, we perform an extensive simulation (details available in
the supplementary documents) to assess the quantification procedure of
cscQTL (referred to as Circall_quant) in comparison to the state-of-the-art
method CIRIquant (Zhang et al., 2020). The results demonstrate that both
Circall_quant and CIRIquant achieve a high level of concordance with
the ground truth number of circRNA transcripts, with Pearson correlation
coefficients (R) of 0.9383 and 0.9184, respectively (see Fig S3 A and S3
B). Additionally, the concordance between Circall_quant and CIRIquant
is remarkably high, with R = 0.9742, while the computational cost of
Circall_quant is significantly lower than that of CIRIquant (see Fig S3 C
and S3 D). These results collectively highlight the robustness of cscQTL.

To investigate the possible relation between circQTLs and immune
GWAS loci, we further perform colocalization tests using COLOC
(Hormozdiari et al., 2016) for eCircRNAs detected by cscQTL_3.
Specifically, we obtain GWAS summary statistics of Crohn’s disease (CD),
Inflammatory bowel disease (IBD) (Liu et al., 2015), and Type 1 diabetes
(T1D) (Chiou et al., 2021) from the GWAS catalog webpage (MacArthur
et al., 2017). We consider a PP.H4 >= 0.5 as the colocalization
threshold and visualize the colocalization using LocusCompare (Liu et al.,
2019a). Overall, two out of 55 circRNAs exhibit colocalization with
immune disease GWAS loci including circBACH2 (6:90206569:90271941
- ENSG00000112182) and circYY1AP1 (1:155676548:155679512 -
ENSG00000163374). circBACH2 is colocalized with all tested traits
including T1D, CD, and IBD with probabilities of 0.89, 0.91, and
0.91, respectively (Fig 2 B, S.4 and S.5). Regarding circYY1AP1, it is
colocalized to CD with a probability of 0.68 and to IBD with a probability
of 0.61 (Fig S.6 and S.7). Interestingly, BACH2 is a known risk gene for
T1D (Marroquí et al., 2014) and circBACH2 in a well-known pathogenic
circRNA (Cai et al., 2019). Overall, these results indicate the potential
role of circRNAs in immune disease regulation.

4 Discussion
CircRNA detection is known as a challenging task. Deploying a single
algorithm in a circQTL study indeed exhibits highly divergent results
suggesting limitations in both sensitivity and specificity of the approach.
Combining several algorithms in circRNA detection has been proposed and
implemented in database construction (Hansen, 2018; Wu et al., 2020)
as an efficient solution for these issues. In this study, we extend this
idea to circQTL analysis by developing a novel computational framework
called cscQTL to unify outputs of multiple circRNA calling algorithms
for circQLT mapping. By using a consensus-based filter together with the
re-quantification procedure, cscQTL provides a coherent interpretation
of circQTLs between circRNA calling algorithms while it is still able to
improve the specificity by combining multiple circRNA calling algorithms.
Compared to the single-method circQTL mapping approach, cscQTL
recalls all highly confident circQTLs (identified by at least two single
methods). The method further identifies more circQTLs than any single-
method circQTL mapping even with the most stringent setting (considers
only circRNA candidates identified in all three algorithms), indicating
its reliability and robustness. Finally, we deploy cscQTL on a human T
cells dataset as a showcase and discover genetic variants that control the
expression of 55 circRNAs. By colocalization tests, we further identify
circBACH2 and circYY1AP1 as potential candidates for immune disease
regulation.

The current study also has some weaknesses. First, circRNA detection
is restricted to 3 high-performance tools and absolute quantification. To
address these issues, we develop a customized sub-pipeline implemented in
"cscQTL_bed.nf” which can accept input circRNAs in bed file format. This

modification makes cscQTL applicable to other circRNA detection tools
and facilitates relative quantification studies, particularly those interested
in exploring the ratios between circRNAs and their linear cognates. In
addition, the application of the current study is limited to human T cells
with a dataset of 40 samples. Nevertheless, future research endeavors
could expand the scope by including larger datasets and conducting further
investigations into ratio-based QTL analyses.

5 Conclusion
With the increasing attention on circRNAs, the bioinformatics community
would benefit from a unified but open-source and portable circQTL
workflow. By taking advantage of Nextflow, we implemented cscQTL as an
easy-to-use pipeline and made it freely available to the public. With inputs
being a directory of RNA-seq data, a genome reference, GWAS summary
statistic data, and a metadata input file, cscQTL automatically performs
circRNA identification, filtering, re-quantification, QTL mapping, and
colocalization tests. As the potential role of circRNA in human health
and disease is becoming more appreciated, we believe that our proposed
framework will facilitate the discovery of circQTLs in the near future.
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