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Abstract

Non-coding genomic variations are crucial for the genetic regulation of traits; however, their functional impact in farmed
animals remains underexplored due to limited genomic resources and the absence of tailored computational tools. Here,
we present a deep learning-based framework that utilizes functional genomics data to generate genome-wide predictions
of the regulatory impact of non-coding variants in cattle, chicken, pig, and Atlantic salmon. By leveraging chromatin
profiles such as ATAC, DHS, and ChIP-seq data, we train and optimize separate deep networks for each species, achieving
robust sequence modeling accuracy specific to each. Motif analysis confirms that the models capture regulatory grammar,
while in silico saturation mutagenesis experiments provide meaningful interpretations of the functional impact of putative
causal variants. Furthermore, functional scores derived from these models predict eQTL causal variants and enhance
genomic prediction performance. Our findings highlight the transformative potential of sequence to function models in
prioritizing causal variants and improving genomic prediction for livestock and aquaculture animals.
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Introduction

Non-coding genomic variations are known to constitute the

majority of disease- and complex trait-associated single

nucleotide polymorphisms (SNP) [1, 2, 3]. Despite the success in

identifying these variants, it remains challenging to accurately

determine which ones are causal based solely on association

results, as many neutral genomic variants are also significantly

associated with traits in GWAS due to linkage disequilibrium

(LD) [4]. To complement the limitations of population-

based association studies, high-throughput functional assays of

regulatory elements such as DNase I hypersensitive sites (DHS)

[5], transposase-accessible chromatin with sequencing (ATAC-

seq) [6], and chromatin immunoprecipitation sequencing (ChIP-

seq) [7] have become invaluable tools for detecting cis-

regulatory elements (CRE) and prioritizing putative non-coding

causal variants.

The advancement of deep learning, combined with the

availability of large-scale functional annotations from projects

like ENCODE [8] and Roadmap Epigenomics [9], has

transformed the training of deep models for predicting

chromatin states and assessing the impact of non-coding

variants from DNA sequences in human genomics. In principle,

deep neural networks are initially trained to differentiate

putative regulatory sequences from background DNA sequences

[10, 11, 12], or to directly predict experimental read coverage

from high-throughput functional assays [13, 14]. Subsequently,
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these models are applied to predict the regulatory impact of any

genetic variants by analyzing the disparities between reference

and alternative alleles. Due to rapid advancements in artificial

intelligence, deep models for regulatory genomics have evolved

into various architectures that continuously improve modeling

performance. Notable architectures include DeepSEA and

Basset, which are purely convolutional neural networks (CNNs)

[10, 12]; Basenji, which employs dilated CNNs [13]; DanQ

and DeepATT, which are hybrid CNNs with recurrent neural

networks (RNNs) [11, 15]; and DeepFormer and Enformer,

which are hybrid CNNs with transformers [14, 16].

In the realm of livestock and aquaculture genomics research,

understanding the functional impact of non-coding variants

is equally important. Variants in cis-regulatory elements

can significantly influence transcriptional regulation, affecting

traits of economic importance [17]. However, the exploration of

functional non-coding variants in these species has fallen behind

human genomics, primarily due to the absence of specialized

functional genomics resources and tailored computational tools.

Genomic prediction has revolutionized livestock breeding by

enabling the selection of individuals based on dense genomic

marker information, thus increasing the precision of breeding

value predictions for economically important traits [18, 19,

20, 21]. Despite its transformative success, genomic prediction

primarily relies on SNPs as markers without considering

the functional impact of the variants which potentially help

to improve genomic prediction performance. The reason for

this stem from the lack of effective methods for prioritizing

functional variants, highlighting the urgent need for approaches

to predict the impact of regulatory sequence variation in farmed

animals.

In this work, we develop deep learning-based sequence

models that utilize large-scale functional genomic datasets

from multiple species, including cattle, pig, chickens, and

Atlantic salmon. These datasets feature ATAC, DHS, histone

modification, and transcription factor ChIP-seq profiles [22, 23]

to prioritize functional variants. We evaluate variant effect

predictions using expression quantitative trait loci (eQTL) data

from large consortium projects, demonstrating that the models

effectively predict putative functional variants. The predicted

scores further enhances genomic prediction as illustrated in

a case study with Atlantic salmon. Overall, our proposed

functional scores show significant potential for prioritizing

causal variants and enhancing genomic prediction practices in

livestock and aquaculture breeding.

Methods

Datasets

An overview of the study is shown in Figure 1, which comprises

three main steps: (i) data collection and preprocessing, (ii) deep

learning model training and optimization, and (iii) regulatory

impact inference. First, chromatin profile peaks from multiple

farmed animal species are collected and preprocessed to obtain

sequences and labels for deep model training (Figure 1 A, B).

Next, we evaluate the performance of two widely used deep

learning architectures for regulatory sequence modeling and

variant impact prediction, DeepSEA [10] and DanQ [11], by

testing different learning rates and applying the commonly

used hold-out chromosome validation approach to identify the

optimal model for each species (Figure 1 C). Finally, the best-

performing models are used to infer the impact of regulatory

variants for the corresponding species (Figure 1 D). Further

details are provided in the following sections.

Training data

To train the machine learning models, we gather chromatin

feature peaks from cattle (Bos taurus), pig (Sus scrofa), chicken

(Gallus gallus), and Atlantic salmon (Salmo salar), sourced

from the FAANG [22] and AQUA-FAANG [23] projects. For

cattle, pig, and chicken, we utilize 95, 80, and 97 chromatin

profiles, respectively, including data on histone modifications,

CTCF ChIP-seq, DHS, and ATAC-seq across eight tissues:

liver, lung, spleen, skeletal muscle, subcutaneous adipose,

cerebellum, brain cortex, and hypothalamus. For Atlantic

salmon, we use 301 profiles from histone modification, ChIP-

seq, and ATAC-seq experiments across six tissues: brain, liver,

gill, gonad, and muscle. Detailed statistics are provided in

Figure 1 A.

For each species, we start by downloading the appropriate

genome assembly version used for peak calling from the

Ensembl database and then divide the genome into 200-bp

bins starting from the first nucleotide of each chromosome.

Specifically, we utilize the ARS-UCD1.2 genome for cattle,

Sscrofa11.1 for pig, GalGal6 for chicken, and Ssal v3.1 for

Atlantic salmon. DNA sequences are extracted from each bin

and encoded using a one-hot scheme: A = [1,0,0,0], C =

[0,1,0,0], G = [0,0,1,0], T = [0,0,0,1], and N = [0,0,0,0]. To meet

the input context length required by DeepSEA and DanQ, we

include the sequences of two bins upstream and downstream

of each target bin, concatenating them to create a final 1000-

bp training sequence. The 200 bp bin for labeling ensures

precise annotation of chromatin features, while the larger input

window is designed to capture broader sequence dependencies

and context, which is essential for learning complex regulatory

grammar across diverse genomic backgrounds [10]. To label

each DNA bin, we use BEDTools [24] to evaluate overlaps

between bin coordinates and chromatin peak regions. Following

the DeepSEA approach [10], a bin is assigned a label of 1 if at

least 50% of its length overlaps with a peak region; otherwise,

it is assigned 0. This process generates a label vector for each

200-bp bin, with the vector size corresponding to the number

of chromatin profiles, as illustrated in Figure 1 B. Overall,

the data processing pipeline generates approximately 17.6, 8.0,

17.3, and 15.7 million examples, with average positive label

fractions of 1.51%, 2.96%, 2.67%, and 0.59% for cattle, chicken,

pig, and salmon, respectively.

All autosomes, excluding those designated for validation and

testing, are used for training. For cattle, chicken, and pig,

held out validation and test sets are fixed, non-overlapping

chromosome splits to ensure data independence and avoid

leakage, similar to previous studies in model species [10, 12, 11].

Chromosome 21 is used for validation and chromosome 25 for

testing in cattle and chicken, while chromosomes 16 and 17 are

used for validation and testing, respectively, in pig. For salmon,

due to the whole-genome duplication event resulting in highly

similar genomic regions [25], random chromosome selection

alone can not avoid data leakage during training. Instead,

chromosomes 21 and 25, which are known to be duplicated,

are kept for validation and testing.

Model architectures

DeepSEA [10] utilizes a three-block convolutional architecture

for feature extraction. The first convolutional block consists of

320 filters with a kernel size of 8, followed by ReLU activation,
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Fig. 1. Overview of the study. (A) Summary of chromatin profiles used for each species. (B) Data preprocessing workflow for generating sequence-level

labels. (C) Deep learning model training and optimization, using a one-hot encoded DNA sequence matrix of size 1000×4 as input and producing a

binary label vector of length equal to the number of chromatin profiles as output.

(D) Variant impact inference scheme.

max pooling with a window size of 4, and dropout with a

probability of 0.2. The second block extends this architecture

with 480 filters of the same size, applying identical pooling

operations and maintaining the dropout rate of 0.2. The third

block further increases the complexity by incorporating 960

filters, and includes a higher dropout rate of 0.5 to better

address over fitting. Following the convolutional and pooling

operations, the network flattens the output and processes

it through two fully connected layers to produce the final

classification outputs.

DanQ [11] begins with a convolutional block that applies

320 filters of size 26 to the input sequences, followed by ReLU

activation, max pooling with a window size of 13, and dropout

with a probability of 0.2. The output of this block is then fed

into a bidirectional LSTM (Long Short-Term Memory) layer,

which has 320 hidden units and processes the sequence data to

capture temporal dependencies. Dropout with a probability of

0.5 is applied to the LSTM output to prevent over fitting. The

output is then flattened and passed through two fully connected

layers for classification.

Model training and evaluation

Deep learning models are trained using TensorFlow v2.12.0

on an NVIDIA Quadro RTX 8000 GPU, with parameters

randomly initialized using TensorFlow’s default settings.

For optimization, we apply the widely used procedure for

training and evaluating deep models for epigenetic sequence

modeling [10, 26, 27]. Binary Cross-Entropy (BCE) loss

function is used as the objective function defined as BCE =

− 1
N

∑N
i=1 [yi log(ŷi) + (1 − yi) log(1 − ŷi)], where yi is the

true label, ŷi is the predicted probability, and N is the number

of samples. The Adam optimizer [28] is applied with a weight

decay of 1 × 10−6 and a batch size of 1024. To identify the

optimal learning rate for each method-dataset pair, we evaluate

four candidate values: 1×10−3, 5×10−4, 1×10−4, and 5×10−5.

Models are trained for up to 100 epochs, with early stopping

applied if the validation loss does not improve for 5 consecutive

epochs.

Finally, model performance is assessed on hold-out test sets.

Both the Area Under the Receiver Operating Characteristic

curve (AUROC) and the Area Under the Precision-Recall curve

(AUPR) are used to select the best model for each species.
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These metrics are particularly appropriate for imbalanced

classification problems, where AUROC evaluates the trade-off

between true positive rate (TPR) and false positive rate (FPR),

while AUPR focuses on the model’s ability to correctly identify

positive instances, emphasizing precision and recall [29]. Both

forward and reverse DNA sequences are used during training,

while only forward sequences are considered for validation and

final evaluation.

Regulatory impact prediction and in silico saturated

mutagenesis

Regulatory impact prediction involves evaluating the potential

effects of genetic variants on regulatory activities [30, 10, 12].

For each variant, two 1000-bp sequences centered on the variant

position are extracted from the reference genome: one carrying

the reference allele and the other carrying the alternative allele.

These sequences are used as input to the trained model, which

calculates the probabilities Preference and Palternative that the

reference and alternative sequences belong to active chromatin

regions, respectively. The regulatory impact of the variant is

inferred as the difference between these probabilities: ∆P =

|Preference − Palternative|.
In silico saturation mutagenesis extends regulatory impact

prediction by evaluating the effect of all possible single-

nucleotide substitutions within a predefined genomic region,

rather than being limited to known variants. In details, for

each position in the region, all possible alternative nucleotides

are substituted into the reference sequence, generating a

set of mutated sequences. Each sequence is then passed

through the trained model to obtain predicted probabilities

of regulatory activity. The effect of a mutation is quantified

as the absolute difference in predicted activity between the

mutated and reference sequences. This procedure yields a

high-resolution map of nucleotide-level regulatory sensitivity,

enabling identification of functionally critical sites across the

region [12].

Motif Analysis

We perform motif analysis by extracting the convolutional

filters from the first layer of each trained model and converting

them into position probability matrices (PPMs). This is

achieved by applying a softmax normalization across the four

nucleotides at each position, which converts filter weights into

probabilities while preserving relative weight contributions and

ensuring each position’s probabilities sum to 1.

For a filter weight matrix W ∈ R4×m (where 4 represents

nucleotides and m is filter length), the conversion for nucleotide

i at position j is given by: PPMij =
exp(Wij)∑4

k=1
exp(Wkj)

.

We then compare the resulting PPMs against known

transcription factor binding motifs using the TOMTOM

algorithm [31], implemented through the MEME Suite web

server [32]. We use the JASPAR 2022 CORE non-redundant

vertebrates v2 database [33] as the reference motif set.

Fine-mapped eQTL variant classification

To assess the utility of the predicted functional scores, we

adopt the methodology described by Avsec et al. [14], focusing

on putative eQTL causal variants. Specifically, we utilize

the SuSiE [34] fine-mapped results across multiple tissues

provided by the PigGTEx consortium [35]. We include only

tissues with at least 500 variants having a posterior inclusion

probability (PIP) exceeding 0.9 in a credible causal set,

resulting in 13 tissue-specific causal variant datasets. Negative

sets are matched by sampling variants with PIP < 0.01 but

|Z-score| > 4 for the same gene. If no such variants are

available, alternatives are selected from genome-wide variants

with PIP < 0.01 and |Z-score| > 6.

Using predicted functional scores, we then train separate

random forest classifiers for each tissue to distinguish between

positive and negative variant sets using ten-fold cross-

validation. Default hyperparameters from scikit-learn are used,

and 50 iterations of stochastic cross-validation and random

forest fitting are performed to estimate model accuracy and

its standard deviation.

Genomic selection analysis

As genomic prediction is a core application of livestock and

aquaculture genomics, we further evaluate the potential of

functional scores for prioritizing SNP sets within genotyping

arrays. The Atlantic salmon SNP array, developed by AquaGen,

comprises 70,000 markers (70k array) is downscaled to 9,073

SNPs, corresponding to a density of one SNP per 250 kb. Seven

SNP sets are constructed: five randomly selected subsets from

the 70k array, one functional set comprising the top 9,073 SNPs

with the highest functional scores across the array, and one

functional set consisting of the top 9,073 SNPs with the highest

functional scores stratified by 250 kb windows (i.e., selecting

the SNP with the highest functional score within each bin).

Functional scores for ranking SNPs are computed as the average

scores derived from epigenomic profiles of brain, gonad, and

liver tissues of male Atlantic salmon.

Two widely utilized genomic prediction methods are applied

including GCTA-Yang, a SNP-BLUP approach implemented

in GCTA; and GCTB-Bayesian, a Bayesian framework

implemented in GCTB. The GCTA-Yang method adopts a

genomic best linear unbiased prediction (GBLUP) framework,

assuming equal contributions of all SNPs to the genetic

architecture of the trait and leveraging a genomic relationship

matrix to predict genetic values [36]. Conversely, the GCTB-

Bayesian method fits all genotyped markers simultaneously,

accommodating heterogeneity in trait genetic architecture

and providing a more flexible framework for genome-wide

association studies and genomic prediction [37].

The dataset used in this analysis comprises Atlantic salmon

from three cohorts: AS19, AS20, and AS21. Each individual

is genotyped for SNPs and assigned a binary phenotype

representing late maturation. Covariates, such as year and age

are included to account for environmental and batch effects.

The models are trained using data from the combined AS19 and

AS20 cohorts and validated on the genetically distinct AS21

cohort, ensuring a robust assessment of model generalizability.

Training is conducted across all SNP sets and prediction

methods. Correlations between observed phenotypes and

predicted phenotypes are subsequently calculated for each SNP

set, providing a quantitative measure of the effectiveness of

functional scores in enhancing genomic prediction.

Results

Optimizing chromatin activity modeling for farmed species

To optimize chromatin activity modeling, we evaluate two

widely used deep learning architectures, DeepSEA and DanQ,

across multiple learning rates. The results are shown in

Figure 2 and S.1, and Table S.1 and S.2. Overall, both

architectures demonstrate high performance across species,
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Fig. 2. Performance comparison (AUROC scores) across learning rates of DeepSEA and DanQ in four species: cattle, chicken, pig, and salmon.

achieving robust AUROC scores. Notably, DanQ dominantly

outperforms DeepSEA with slightly higher AUROC scores

across species and learning rates tested. For instance, in Cattle,

the median AUROC score for DanQ ranges from 0.9066 to

0.9110, while DeepSEA achieves scores between 0.9010 and

0.9076. Similarly, in chicken, DanQ scores range from 0.8700

to 0.8825, compared to 0.8616 to 0.8800 for DeepSEA. The

advantage of DanQ may be attributed to its ability to model

the temporal dynamics of regulatory vocabularies [11]. The

AUPR metric further supports this observation. In cattle,

DanQ achieves median AUPR scores ranging from 0.4389 to

0.4574, compared to 0.4305 to 0.4561 for DeepSEA. In chicken,

DanQ scores range from 0.4544 to 0.4859, while DeepSEA

ranges from 0.4171 to 0.4670. For pig, DanQ achieves 0.3255

to 0.3400, slightly higher than DeepSEA’s 0.3107 to 0.3333. In

salmon, where predictive performance is generally lower, DanQ

achieves AUPR scores ranging from 0.0993 to 0.1288.

Building upon these findings, we choose DanQ as the

primary method for evaluation by selecting the best-performing

DanQ model for each species (Table S.3). For cattle, the DanQ

model trained with a learning rate of 5×10−5 achieves a median

AUROC score of 0.9110 and a corresponding median AUPR

of 0.4574. Similarly, in chicken, the best DanQ model, trained

with a learning rate of 1×10−4, records a median AUROC score

of 0.8825 and a median AUPR of 0.4846. For pig, the highest-

performing DanQ model utilizes a learning rate of 5 × 10−4,

achieving a median AUROC of 0.8512 with a median AUPR of

0.3362. Lastly, the salmon DanQ model trained at a learning

rate of 5×10−5 achieves a median AUROC score of 0.9065 and

a corresponding median AUPR of 0.1288.

To gain deeper insights, we explore the variability in

performance across epigenetic profiles. As shown in Figure S.2,

the AUROC scores exhibit significant variation depending on

the data type and species. For instance, in cattle, H3K27ac

and CTCF data achieve the highest median AUROC scores,

while in salmon, H3K4me3 and ATAC/DNase stand out as the

best-performing features. Chicken and pig display intermediate

performance levels across most features. These results suggest

that certain epigenetic features are more informative than

others for regulatory activity modeling in the different species.

Overall, these results indicate that we have achieved high

accuracy, but the effectiveness of regulatory activity modeling

varies across species and type of epigenetic features.

Deep models learn transcription factor binding motifs

To verify that the deep models effectively learn regulatory

grammar, we conduct motif analysis. Following the approach

outlined in the method section, for each species, we convert

the weight matrices from the first convolutional layer of the

trained deep models into PPMs. These learned motifs are then

compared against the JASPAR 2022 CORE non-redundant v2

database using the TOMTOM algorithm [31].

Among the 320 motifs learned by each DanQ model, 49,

51, 63, and 34 motifs significantly match known motifs in the

target database (E-value < 0.01) for cattle, chicken, pig, and

salmon, respectively. Among the significant matched motifs in

cattle, we select four representative motifs and visualize them

for illustration, as shown in Figure 3. These findings suggest

that the trained models effectively learn regulatory vocabulary.

However, the number of matched motifs is substantially lower

than the 166 out of 320 matches reported for the human DanQ
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Fig. 3. Visualization of four motifs GT, BTD, CTCF, and NFIX in cattle.

model [11]. This disparity may reflect the under-representation

of farmed animal motifs in current databases and the limitation

in term of training data for these species.

Functional scores predict eQTL causal variants
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Fig. 4. Mean and standard deviation of AUROC scores for 50 random

forest eQTL causal variant classifiers across 13 pig eQTL datasets.

The utility of the predicted functional scores is evaluated

through random forest classification across 13 pig tissue-specific

datasets, distinguishing putative eQTL causal variants from

matched negative variants. The mean AUROC scores from

50 iterations of ten-fold cross-validation vary across tissues,

highlighting differences in predictive performance. The AUROC

scores range from 0.7469 in spleen, which demonstrates the

strongest predictive ability, to 0.5226 in uterus, indicating

lowest performance. Other tissues exhibit intermediate levels

of predictive accuracy, with scores of 0.6018 (lung), 0.5541

(testis), 0.5583 (adipose), 0.5707 (embryo), 0.5519 (ileum),

0.5895 (ovary), 0.5572 (small intestine), 0.5611 (brain), 0.5526

(muscle), 0.5508 (liver), and 0.5261 (blood).

The overall mean AUROC score across all tissues is

0.5726, indicating moderate performance of the functional

scores in predicting putative eQTL causal variants. The

results, including the mean and standard deviation of model

performance, are detailed in Figure 4. These findings suggest

that the predicted functional scores are correlated with eQTL

predicted causal variants, although the strength of correlation

varies across tissues.

In silico saturation mutagenesis aids functional interpretation

of putative causal variants

A trained model can be used to predict the functional activity

of any given sequence, providing a powerful method for

understanding and utilizing the regulatory patterns it has

learned. In silico saturation mutagenesis experiments, which

involve testing every possible mutation in a sequence, serve

as an effective tool for identifying the specific nucleotides

responsible for functional activity [12]. This approach is similar

to standard functional impact prediction, where the difference

in probabilities between two genotypes is computed. However,

the inference is not limited to the variant position but extends

to all possible variants within the targeted region.

We apply this strategy to investigate the putative regulatory

variant rs133257289 in cattle, which is the top colocalized SNP

of the cis-eQTL of DGAT1 and the GWAS association with

protein yield [38, 39]. In Figure 5, we present heat maps showing

the change in predicted chromatin accessibility (mean of liver

ATAC-seq tracks) due to mutations at each position, replacing

the original nucleotide with each alternative for sequences

surrounding the variant. These maps highlight the nucleotides

most crucial to a sequence’s activity. For each position, we

assign two scores: the loss score, which measures the largest

possible decrease in activity, and the gain score, which measures

the largest increase.
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Fig. 5. In silico saturation mutagenesis experiments of rs133257289, a putative regulatory variant in cattle, which is the top colocalized SNP for the

cis-eQTL of DGAT1 and the GWAS association with protein yield.

High gain scores correspond to positions associated with the

ZNF740 motif, where mutations disrupt the motif and increase

chromatin accessibility. Notably, a G to C mutation aligns with

the observed effect size of increased gene expression in the

corresponding eQTL test in the liver ( p-value < 1.2 × 10−21,

effect size = 0.3123) [38]. These findings highlight the potential

of in silico saturation mutagenesis experiments using trained

models for interpreting putative causal variants.

Functional impact scores improve genomic selection

To assess the impact of SNP selection strategies on genomic

prediction accuracy, we evaluate the predictive correlation

between observed and predicted phenotypes across various SNP

sets and genomic prediction methods (Figure 6 and Table S.4).

The SNP sets include the full 70k SNP array, the top 9,073

SNPs selected based on functional scores (both genome-wide

and within 250 kb bins), and random subsets of 9,073 SNPs

derived from the 70k array.
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Fig. 6. Genomic prediction performance of various SNP sets.

For the GCTA-Yang method, which assumes equal SNP

contributions, the full 70k SNP array exhibits the highest

predictive performance (correlation = 0.373), followed closely

by the functional SNP set stratified by 250 kb bins (correlation

= 0.365). SNP sets based on genome-wide functional scores

(correlation 0.358) and random subsets of the array (correlation

= 0.348 ± 0.0057) show slightly lower predictive correlations. In

contrast, the GCTB-Bayesian method demonstrates improved

predictive accuracy compared to GCTA-Yang across all SNP

sets. The 70k SNP array achieves the highest predictive

correlation (mean = 0.421), with functional SNP sets (both

genome-wide and per 250 kb bin) showing comparable

predictive performance (correlation = 0.404 for both SNP sets).

Random SNP subsets yield the lowest predictive correlation

under this method (correlation = 0.359 ± 0.0155).

Overall, these findings highlight the potential utility of

functional scores in prioritizing SNPs for genomic prediction.

Specifically, SNP sets derived from functional annotations

perform on par with the full array, while significantly

outperforming random SNP subsets. The results also

demonstrate the advantages of the GCTB-Bayesian method

over the GCTA-Yang approach, particularly in scenarios

involving the maturation trait in Atlantic salmon.

Discussion

Despite its promise, the application of deep learning for

predicting the impact of genetic variants in farm animals

remains underexplored [40, 41]. This study presents four

deep learning sequence-to-function models, each trained on

diverse functional genomics data from cattle, pigs, chicken

or salmon. We demonstrate the model’s ability to learn

regulatory motifs and predict regulatory impact of non-coding

variants. By enabling more precise identification of functional

variants, these models can support more informed breeding
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decisions, ultimately contributing to sustainable improvements

in livestock productivity and resilience. This work sets a

foundation for further research and application of deep learning

in the field of animal genomics.

We tried both the DeepSEA and DanQ deep learning

architectures, settling on the DanQ architecture as it

consistently returned higher AUROC scores in all species. This

difference in performance between the architectures was also

shown in the original DanQ model that was trained on human

data [11], indicating the finding generalizes well across species.

The key difference between these architectures is the recurrent

bLSTM block used in DanQ which has the ability to learn

positional dependencies in the sequence, possibly reflecting the

nature of the regulatory grammar.

Our motif analysis highlights the biological relevance of

these models, demonstrating their ability to learn sequence

patterns corresponding to known transcription factor binding

sites. The DanQ model, with its single convolutional layer and

long filters, is particularly suited for such analyses, as these

filters effectively function as motif detectors. We identified

motifs various significant motifs in all species, underscoring

the models’ capability to capture regulatory elements even

with limited training datasets in farmed animals. However, the

reduced number of detected motifs compared to the human

DanQ model may stem from key differences in the datasets.

The original DanQ model was trained on a comprehensive

functional data with large amount of TF ChIP-seq data making

it to learn binding motifs specific to transcription factors in

the dataset. In contrast, our models rely on broader chromatin

accessibility profiles, which may limit motif specificity. Another

factor to consider is the evolutionary divergence between

species transcription factors in distant species compared to

the reference database, such as salmon, may recognize motifs

distinct from those in human or mouse, further influencing

motif detection. These findings highlight the need for more

comprehensive functional annotations in non-human species,

which could enhance both motif discovery and overall model

performance.

The application of in silico saturation mutagenesis

demonstrates the practical utility of these models in

interpreting putative causal regulatory variants. For instance,

the analysis of rs133257289 in cattle reveals specific nucleotide

changes that influence chromatin accessibility and align with

observed eQTL effects, underscoring the potential of deep

learning-based approaches for functional variant interpretation.

Such methods provide invaluable insights for identifying

candidate variants linked to economically important traits,

paving the way for more targeted breeding strategies.

Moreover, our evaluation of functional scores in predicting

eQTL causal variants in pig reveals moderate to high accuracy,

with performance varying across tissues. Closer examination

of the training data reveals that predictive performance is

generally higher in tissues represented in the training chromatin

profiles. Notably, spleen (0.7469), lung (0.6018), and liver

(0.5508) which are included in the training data—exhibit

relatively stronger performance compared to tissues such as

uterus (0.5226), testis (0.5541), and blood (0.5261), which are

absent from the training set. This suggests that the presence

of tissue-matched chromatin features, including histone

modifications, DHS, ATAC-seq, and CTCF binding profiles,

enhances the classification of putative eQTLs. Intermediate

AUROC values in some tissues may reflect partial similarity

or shared regulatory architecture with training tissues. These

findings highlight the importance of incorporating diverse,

tissue-relevant epigenomic data to improve the generalizability

and predictive power of functional variant scoring models.

Importantly, these functional scores demonstrate significant

potential for enhancing genomic selection, as evidenced by

their comparable performance to full SNP arrays and their

superiority over randomly selected subsets as demonstrated in

salmon. This finding suggests that functional annotations can

be used to prioritize SNPs for functional-aware array design

[42], thereby improving the efficiency and accuracy of genomic

prediction.

Finally, we note that class imbalance is a common

phenomenon in regulatory sequence modeling, where positive

regulatory elements are typically outnumbered by negative

examples. Our study adheres to standard practices widely

adopted in the field, including those employed by models such

as DeepSEA [10], DanQ [11], and PlantDeepSEA [27], which

train the models with standard binary cross-entropy objective

on genome-wide data. Nevertheless, a systematic investigation

into the impact of class imbalance on model performance and

solutions for improving generalization are still lacking and

would be a valuable direction for future research.

Conclusion

Overall, this study demonstrates the feasibility and utility of

deep learning-based approaches for predicting the regulatory

impact of non-coding variants in farmed species. By leveraging

functional genomic data, our models achieve high predictive

accuracy, uncover regulatory grammar, and provide actionable

insights for genomic selection. The integration of functional

annotations into breeding programs offers a promising approach

for enhancing the precision and efficiency of livestock and

aquaculture genomics. Future work should focus on expanding

functional genomics resources for farmed species and exploring

the application of these methods to other economically

important organisms.
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