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Abstract

Non-coding genomic variations are crucial for the genetic regulation of traits; however, their functional impact in farmed
animals remains underexplored due to limited genomic resources and the absence of tailored computational tools. Here,
we present a deep learning-based framework that utilizes functional genomics data to generate genome-wide predictions
of the regulatory impact of non-coding variants in cattle, chicken, pig, and Atlantic salmon. By leveraging chromatin
profiles such as ATAC, DHS, and ChIP-seq data, we train and optimize separate deep networks for each species, achieving
robust sequence modeling accuracy specific to each. Motif analysis confirms that the models capture regulatory grammar,
while in silico saturation mutagenesis experiments provide meaningful interpretations of the functional impact of putative
causal variants. Furthermore, functional scores derived from these models predict eQTL causal variants and enhance
genomic prediction performance. Our findings highlight the transformative potential of sequence to function models in
prioritizing causal variants and improving genomic prediction for livestock and aquaculture animals.
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Introduction [5], transposase-accessible chromatin with sequencing (ATAC-

. . L. . seq) [6], and chromatin immunoprecipitation sequencing (ChIP-
Non-coding genomic variations are known to constitute the . X K
.. . . . . seq) [7] have become invaluable tools for detecting cis-
majority of disease- and complex trait-associated single lat ) ts (CRE) and prioritizi tati di
regulatory elements and prioritizing putative non-codin

nucleotide polymorphisms (SNP) [1, 2, 3]. Despite the success in & y. p &P &
. o . X . . causal variants.
identifying these variants, it remains challenging to accurately . R .
R . L. The advancement of deep learning, combined with the
determine which ones are causal based solely on association o . | i
availability of large-scale functional annotations from projects

like ENCODE [8] and Roadmap Epigenomics [9], has
transformed the training of deep models for predicting

results, as many neutral genomic variants are also significantly
associated with traits in GWAS due to linkage disequilibrium
(LD) [4]. To complement the limitations of population-
based association studies, high-throughput functional assays of
regulatory elements such as DNase I hypersensitive sites (DHS)

chromatin states and assessing the impact of non-coding
variants from DNA sequences in human genomics. In principle,
deep neural networks are initially trained to differentiate
putative regulatory sequences from background DNA sequences
[10, 11, 12], or to directly predict experimental read coverage
from high-throughput functional assays [13, 14]. Subsequently,
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these models are applied to predict the regulatory impact of any
genetic variants by analyzing the disparities between reference
and alternative alleles. Due to rapid advancements in artificial
intelligence, deep models for regulatory genomics have evolved
into various architectures that continuously improve modeling
Notable architectures include DeepSEA and
Basset, which are purely convolutional neural networks (CNNs)
[10, 12]; Basenji, which employs dilated CNNs [13]; DanQ
and DeepATT, which are hybrid CNNs with recurrent neural
networks (RNNs) [11, 15]; and DeepFormer and Enformer,
which are hybrid CNNs with transformers [14, 16].

In the realm of livestock and aquaculture genomics research,

performance.

understanding the functional impact of non-coding variants
is equally important. Variants in cis-regulatory elements
can significantly influence transcriptional regulation, affecting
traits of economic importance [17]. However, the exploration of
functional non-coding variants in these species has fallen behind
human genomics, primarily due to the absence of specialized
functional genomics resources and tailored computational tools.

Genomic prediction has revolutionized livestock breeding by
enabling the selection of individuals based on dense genomic
marker information, thus increasing the precision of breeding
value predictions for economically important traits [18, 19,
20, 21]. Despite its transformative success, genomic prediction
primarily relies on SNPs as markers without considering
the functional impact of the variants which potentially help
to improve genomic prediction performance. The reason for
this stem from the lack of effective methods for prioritizing
functional variants, highlighting the urgent need for approaches
to predict the impact of regulatory sequence variation in farmed
animals.

In this work, we develop deep learning-based sequence
models that utilize large-scale functional genomic datasets
from multiple species, including cattle, pig, chickens, and
Atlantic salmon. These datasets feature ATAC, DHS, histone
modification, and transcription factor ChIP-seq profiles [22, 23]
to prioritize functional variants. We evaluate variant effect
predictions using expression quantitative trait loci (eQTL) data
from large consortium projects, demonstrating that the models
effectively predict putative functional variants. The predicted
scores further enhances genomic prediction as illustrated in
a case study with Atlantic salmon. Overall, our proposed
functional scores show significant potential for prioritizing
causal variants and enhancing genomic prediction practices in
livestock and aquaculture breeding.

Methods

Datasets

An overview of the study is shown in Figure 1, which comprises
three main steps: (i) data collection and preprocessing, (ii) deep
learning model training and optimization, and (iii) regulatory
impact inference. First, chromatin profile peaks from multiple
farmed animal species are collected and preprocessed to obtain
sequences and labels for deep model training (Figure 1 A, B).
Next, we evaluate the performance of two widely used deep
learning architectures for regulatory sequence modeling and
variant impact prediction, DeepSEA [10] and DanQ [11], by
testing different learning rates and applying the commonly
used hold-out chromosome validation approach to identify the
optimal model for each species (Figure 1 C). Finally, the best-
performing models are used to infer the impact of regulatory

variants for the corresponding species (Figure 1 D). Further
details are provided in the following sections.

Training data

To train the machine learning models, we gather chromatin
feature peaks from cattle (Bos taurus), pig (Sus scrofa), chicken
(Gallus gallus), and Atlantic salmon (Salmo salar), sourced
from the FAANG [22] and AQUA-FAANG [23] projects. For
cattle, pig, and chicken, we utilize 95, 80, and 97 chromatin
profiles, respectively, including data on histone modifications,
CTCF ChIP-seq, DHS, and ATAC-seq across eight tissues:
liver, lung, spleen, skeletal muscle, subcutaneous adipose,
cerebellum, brain cortex, and hypothalamus. For Atlantic
salmon, we use 301 profiles from histone modification, ChIP-
seq, and ATAC-seq experiments across six tissues: brain, liver,
gill, gonad, and muscle. Detailed statistics are provided in
Figure 1 A.

For each species, we start by downloading the appropriate
genome assembly version used for peak calling from the
Ensembl database and then divide the genome into 200-bp
bins starting from the first nucleotide of each chromosome.
Specifically, we utilize the ARS-UCD1.2 genome for cattle,
Sscrofall.l for pig, GalGal6 for chicken, and Ssal_v3.1 for
Atlantic salmon. DNA sequences are extracted from each bin
and encoded using a one-hot scheme: A = [1,0,0,0], C =
[0,1,0,0], G = [0,0,1,0], T = [0,0,0,1], and N = [0,0,0,0]. To meet
the input context length required by DeepSEA and DanQ, we
include the sequences of two bins upstream and downstream
of each target bin, concatenating them to create a final 1000-
bp training sequence. The 200 bp bin for labeling ensures
precise annotation of chromatin features, while the larger input
window is designed to capture broader sequence dependencies
and context, which is essential for learning complex regulatory
grammar across diverse genomic backgrounds [10]. To label
each DNA bin, we use BEDTools [24] to evaluate overlaps
between bin coordinates and chromatin peak regions. Following
the DeepSEA approach [10], a bin is assigned a label of 1 if at
least 50% of its length overlaps with a peak region; otherwise,
it is assigned 0. This process generates a label vector for each
200-bp bin, with the vector size corresponding to the number
of chromatin profiles, as illustrated in Figure 1 B. Overall,
the data processing pipeline generates approximately 17.6, 8.0,
17.3, and 15.7 million examples, with average positive label
fractions of 1.51%, 2.96%, 2.67%, and 0.59% for cattle, chicken,
pig, and salmon, respectively.

All autosomes, excluding those designated for validation and
testing, are used for training. For cattle, chicken, and pig,
held out validation and test sets are fixed, non-overlapping
chromosome splits to ensure data independence and avoid
leakage, similar to previous studies in model species [10, 12, 11].
Chromosome 21 is used for validation and chromosome 25 for
testing in cattle and chicken, while chromosomes 16 and 17 are
used for validation and testing, respectively, in pig. For salmon,
due to the whole-genome duplication event resulting in highly
similar genomic regions [25], random chromosome selection
alone can not avoid data leakage during training. Instead,
chromosomes 21 and 25, which are known to be duplicated,
are kept for validation and testing.

Model architectures

DeepSEA [10] utilizes a three-block convolutional architecture
for feature extraction. The first convolutional block consists of
320 filters with a kernel size of 8, followed by ReLU activation,



Sequence-based models for farmed animals | 3

A. Datasets C. Model training
L.ATTACGCTGGGTACAGA..
One-hot Al J1]oJo[1] 1Jo[1 0}1
cl-.JoJoo[o[1]o] lo[1[o[o[o]-]
encoded a[Jo[o[o[o[o[[o[o[t[1[1 6[6 o1]o].]
DNA [ -Jo1[1]o[olo[o[]o[o]o[1[o[o[oo[o]-]
Types Cattle Chicken Pig Salmon sequences 1000 bp
ATAC/DNaseSeq 15 17 16 48 :
CTCF/DMC1 16 16 0 56
H3K27ac 16 16 16 47 C A\=S74
H3K27me3 16 16 16 47 DeepSEA/DanQ
architectures
H3K36me3 0 0 0 9 f f
H3K4me1 16 16 16 47
H3K4me3 16 16 16 47 =
Sum 95 97 80 301 X
Chromatin Track 1
activity labels Track 2
at center Track 3
200bp bins :
Track N
B. Data labelling scheme D. Regulatory impact inference
1 1 ! -
1
1 1 1 .. .ATTACGCTGGGTACAGA. . .
] I@ 1 1 . . .ATTACGCTTGGTACAGA. . .
I T
Track 1 1 /\
(1] 1(0] !
T
AN

Track 2 1
(0]

1 1 /A\\
(1)
Track 3 | T '

=

1
1 1 !
L NN\r

1
Reference genome 1™ 200-6p bin” |

\_Class labels

=

[ P(activities|ref sequence) ]

[ P(activities|alt sequence) ]

[Variant regulatory impacts]

Fig. 1. Overview of the study. (A) Summary of chromatin profiles used for each species. (B) Data preprocessing workflow for generating sequence-level

labels. (C) Deep learning model training and optimization, using a one-hot encoded DNA sequence matrix of size 1000x4 as input and producing a

binary label vector of length equal to the number of chromatin profiles as output.

(D) Variant impact inference scheme.

max pooling with a window size of 4, and dropout with a
probability of 0.2. The second block extends this architecture
with 480 filters of the same size, applying identical pooling
operations and maintaining the dropout rate of 0.2. The third
block further increases the complexity by incorporating 960
filters, and includes a higher dropout rate of 0.5 to better
address over fitting. Following the convolutional and pooling
operations, the network flattens the output and processes
it through two fully connected layers to produce the final
classification outputs.

DanQ [11] begins with a convolutional block that applies
320 filters of size 26 to the input sequences, followed by ReLU
activation, max pooling with a window size of 13, and dropout
with a probability of 0.2. The output of this block is then fed
into a bidirectional LSTM (Long Short-Term Memory) layer,
which has 320 hidden units and processes the sequence data to
capture temporal dependencies. Dropout with a probability of
0.5 is applied to the LSTM output to prevent over fitting. The
output is then flattened and passed through two fully connected
layers for classification.

Model training and evaluation

Deep learning models are trained using TensorFlow v2.12.0
on an NVIDIA Quadro RTX 8000 GPU, with parameters
default
we apply the widely used procedure for

randomly initialized using TensorFlow’s settings.
For optimization,
training and evaluating deep models for epigenetic sequence
modeling [10, 26, 27]. Binary Cross-Entropy (BCE) loss
function is used as the objective function defined as BCE =
—% 2N, [yilog(9:) + (1 — yi) log(1 — §)], where y; is the
true label, g; is the predicted probability, and N is the number
of samples. The Adam optimizer [28] is applied with a weight
decay of 1 x 107°% and a batch size of 1024. To identify the
optimal learning rate for each method-dataset pair, we evaluate
four candidate values: 1x1072, 5x107%, 1x10~%, and 5x107°.
Models are trained for up to 100 epochs, with early stopping
applied if the validation loss does not improve for 5 consecutive
epochs.

Finally, model performance is assessed on hold-out test sets.
Both the Area Under the Receiver Operating Characteristic
curve (AUROC) and the Area Under the Precision-Recall curve

(AUPR) are used to select the best model for each species.
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These metrics are particularly appropriate for imbalanced
classification problems, where AUROC evaluates the trade-off
between true positive rate (TPR) and false positive rate (FPR),
while AUPR focuses on the model’s ability to correctly identify
positive instances, emphasizing precision and recall [29]. Both
forward and reverse DNA sequences are used during training,
while only forward sequences are considered for validation and
final evaluation.

Regulatory impact prediction and in silico saturated
mutagenesis

Regulatory impact prediction involves evaluating the potential
effects of genetic variants on regulatory activities [30, 10, 12].
For each variant, two 1000-bp sequences centered on the variant
position are extracted from the reference genome: one carrying
the reference allele and the other carrying the alternative allele.
These sequences are used as input to the trained model, which
calculates the probabilities Preference and Phalternative that the
reference and alternative sequences belong to active chromatin
regions, respectively. The regulatory impact of the variant is
inferred as the difference between these probabilities: AP =

‘Preference - Palternative‘-

In silico saturation mutagenesis extends regulatory impact
prediction by evaluating the effect of all possible single-
nucleotide substitutions within a predefined genomic region,
rather than being limited to known variants. In details, for
each position in the region, all possible alternative nucleotides
are substituted into the reference sequence, generating a
set of mutated sequences. Each sequence is then passed
through the trained model to obtain predicted probabilities
of regulatory activity. The effect of a mutation is quantified
as the absolute difference in predicted activity between the
mutated and reference sequences. This procedure yields a
high-resolution map of nucleotide-level regulatory sensitivity,
enabling identification of functionally critical sites across the
region [12].

Motif Analysis

We perform motif analysis by extracting the convolutional
filters from the first layer of each trained model and converting
them into position probability matrices (PPMs). This is
achieved by applying a softmax normalization across the four
nucleotides at each position, which converts filter weights into
probabilities while preserving relative weight contributions and
ensuring each position’s probabilities sum to 1.

For a filter weight matrix W € R*X™ (where 4 represents

nucleotides and m is filter length), the conversion for nucleotide
exp(Wi;)

ko exp(Wiy)

i at position j is given by: PPM;; =

We then compare the resulting PPMs against known
transcription factor binding motifs using the TOMTOM
algorithm [31], implemented through the MEME Suite web
server [32]. We use the JASPAR 2022 CORE non-redundant

vertebrates v2 database [33] as the reference motif set.

Fine-mapped eQTL variant classification

To assess the utility of the predicted functional scores, we
adopt the methodology described by Avsec et al. [14], focusing
on putative eQTL causal variants. Specifically, we utilize
the SuSiE [34] fine-mapped results across multiple tissues
provided by the PigGTEx consortium [35]. We include only
tissues with at least 500 variants having a posterior inclusion
probability (PIP) exceeding 0.9 in a credible causal set,

resulting in 13 tissue-specific causal variant datasets. Negative
sets are matched by sampling variants with PIP < 0.01 but
|Z-score|] > 4 for the same gene. If no such variants are
available, alternatives are selected from genome-wide variants
with PIP < 0.01 and |Z-score| > 6.

Using predicted functional scores, we then train separate
random forest classifiers for each tissue to distinguish between
positive and negative variant sets using ten-fold cross-
validation. Default hyperparameters from scikit-learn are used,
and 50 iterations of stochastic cross-validation and random
forest fitting are performed to estimate model accuracy and
its standard deviation.

Genomic selection analysis

As genomic prediction is a core application of livestock and
aquaculture genomics, we further evaluate the potential of
functional scores for prioritizing SNP sets within genotyping
arrays. The Atlantic salmon SNP array, developed by AquaGen,
comprises 70,000 markers (70k array) is downscaled to 9,073
SNPs, corresponding to a density of one SNP per 250 kb. Seven
SNP sets are constructed: five randomly selected subsets from
the 70k array, one functional set comprising the top 9,073 SNPs
with the highest functional scores across the array, and one
functional set consisting of the top 9,073 SNPs with the highest
functional scores stratified by 250 kb windows (i.e., selecting
the SNP with the highest functional score within each bin).
Functional scores for ranking SNPs are computed as the average
scores derived from epigenomic profiles of brain, gonad, and
liver tissues of male Atlantic salmon.

Two widely utilized genomic prediction methods are applied
including GCTA-Yang, a SNP-BLUP approach implemented
in GCTA; and GCTB-Bayesian, a Bayesian framework
implemented in GCTB. The GCTA-Yang method adopts a
genomic best linear unbiased prediction (GBLUP) framework,
assuming equal contributions of all SNPs to the genetic
architecture of the trait and leveraging a genomic relationship
matrix to predict genetic values [36]. Conversely, the GCTB-
Bayesian method fits all genotyped markers simultaneously,
accommodating heterogeneity in trait genetic architecture
and providing a more flexible framework for genome-wide
association studies and genomic prediction [37].

The dataset used in this analysis comprises Atlantic salmon
from three cohorts: AS19, AS20, and AS21. Each individual
is genotyped for SNPs and assigned a binary phenotype
representing late maturation. Covariates, such as year and age
are included to account for environmental and batch effects.
The models are trained using data from the combined AS19 and
AS20 cohorts and validated on the genetically distinct AS21
cohort, ensuring a robust assessment of model generalizability.

Training is conducted across all SNP sets and prediction
methods. Correlations between observed phenotypes and
predicted phenotypes are subsequently calculated for each SNP
set, providing a quantitative measure of the effectiveness of
functional scores in enhancing genomic prediction.

Results
Optimizing chromatin activity modeling for farmed species

To optimize chromatin activity modeling, we evaluate two
widely used deep learning architectures, DeepSEA and DanQ),
across multiple learning rates. The results are shown in
Figure 2 and S.1, and Table S.1 and S.2. Overall, both
architectures demonstrate high performance across species,
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Fig. 2. Performance comparison (AUROC scores) across learning rates of DeepSEA and DanQ in four species: cattle, chicken, pig, and salmon.

achieving robust AUROC scores. Notably, Dan@Q dominantly
outperforms DeepSEA with slightly higher AUROC scores
across species and learning rates tested. For instance, in Cattle,
the median AUROC score for DanQ ranges from 0.9066 to
0.9110, while DeepSEA achieves scores between 0.9010 and
0.9076. Similarly, in chicken, DanQ scores range from 0.8700
to 0.8825, compared to 0.8616 to 0.8800 for DeepSEA. The
advantage of DanQ may be attributed to its ability to model
the temporal dynamics of regulatory vocabularies [11]. The
AUPR metric further supports this observation. In cattle,
DanQ achieves median AUPR scores ranging from 0.4389 to
0.4574, compared to 0.4305 to 0.4561 for DeepSEA. In chicken,
DanQ scores range from 0.4544 to 0.4859, while DeepSEA
ranges from 0.4171 to 0.4670. For pig, DanQ achieves 0.3255
to 0.3400, slightly higher than DeepSEA’s 0.3107 to 0.3333. In
salmon, where predictive performance is generally lower, DanQ
achieves AUPR scores ranging from 0.0993 to 0.1288.

Building upon these findings, we choose DanQ as the
primary method for evaluation by selecting the best-performing
Dan@Q model for each species (Table S.3). For cattle, the DanQ
model trained with a learning rate of 5x 107° achieves a median
AUROC score of 0.9110 and a corresponding median AUPR
of 0.4574. Similarly, in chicken, the best DanQ model, trained
with a learning rate of 1 x10~%, records a median AUROC score
of 0.8825 and a median AUPR of 0.4846. For pig, the highest-
performing DanQ model utilizes a learning rate of 5 x 1074,
achieving a median AUROC of 0.8512 with a median AUPR of
0.3362. Lastly, the salmon DanQ model trained at a learning
rate of 5 x 107° achieves a median AUROC score of 0.9065 and
a corresponding median AUPR of 0.1288.

To gain deeper insights, we explore the wvariability in
performance across epigenetic profiles. As shown in Figure S.2,
the AUROC scores exhibit significant variation depending on
the data type and species. For instance, in cattle, H3K27ac
and CTCF data achieve the highest median AUROC scores,
while in salmon, H3K4me3 and ATAC/DNase stand out as the
best-performing features. Chicken and pig display intermediate
performance levels across most features. These results suggest
that certain epigenetic features are more informative than
others for regulatory activity modeling in the different species.
Overall, these results indicate that we have achieved high
accuracy, but the effectiveness of regulatory activity modeling
varies across species and type of epigenetic features.

Deep models learn transcription factor binding motifs

To verify that the deep models effectively learn regulatory
grammar, we conduct motif analysis. Following the approach
outlined in the method section, for each species, we convert
the weight matrices from the first convolutional layer of the
trained deep models into PPMs. These learned motifs are then
compared against the JASPAR 2022 CORE non-redundant v2
database using the TOMTOM algorithm [31].

Among the 320 motifs learned by each DanQ model, 49,
51, 63, and 34 motifs significantly match known motifs in the
target database (E-value < 0.01) for cattle, chicken, pig, and
salmon, respectively. Among the significant matched motifs in
cattle, we select four representative motifs and visualize them
for illustration, as shown in Figure 3. These findings suggest
that the trained models effectively learn regulatory vocabulary.
However, the number of matched motifs is substantially lower
than the 166 out of 320 matches reported for the human DanQ
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Fig. 3. Visualization of four motifs GT, BTD, CTCF, and NFIX in cattle.

model [11]. This disparity may reflect the under-representation
of farmed animal motifs in current databases and the limitation

in term of training data for these species.

Functional scores predict eQTL causal variants
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The utility of the predicted functional scores is evaluated
through random forest classification across 13 pig tissue-specific
datasets, distinguishing putative eQTL causal variants from
The mean AUROC scores from
50 iterations of ten-fold cross-validation vary across tissues,

matched negative variants.

highlighting differences in predictive performance. The AUROC
scores range from 0.7469 in spleen, which demonstrates the
strongest predictive ability, to 0.5226 in uterus, indicating
lowest performance. Other tissues exhibit intermediate levels
of predictive accuracy, with scores of 0.6018 (lung), 0.5541

(testis), 0.5583 (adipose), 0.5707 (embryo), 0.5519 (ileum),
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0.5895 (ovary), 0.5572 (small intestine), 0.5611 (brain), 0.5526
(muscle), 0.5508 (liver), and 0.5261 (blood).

The overall mean AUROC score across all
0.5726,
scores

tissues is
indicating moderate performance of the functional
The
results, including the mean and standard deviation of model

in predicting putative eQTL causal variants.

performance, are detailed in Figure 4. These findings suggest
that the predicted functional scores are correlated with eQTL
predicted causal variants, although the strength of correlation
varies across tissues.

In silico saturation mutagenesis aids functional interpretation
of putative causal variants

A trained model can be used to predict the functional activity
of any given sequence, providing a powerful method for
understanding and utilizing the regulatory patterns it has
learned. In silico saturation mutagenesis experiments, which
involve testing every possible mutation in a sequence, serve
as an effective tool for identifying the specific nucleotides
responsible for functional activity [12]. This approach is similar
to standard functional impact prediction, where the difference
in probabilities between two genotypes is computed. However,
the inference is not limited to the variant position but extends
to all possible variants within the targeted region.

‘We apply this strategy to investigate the putative regulatory
variant rs133257289 in cattle, which is the top colocalized SNP
of the cis-eQTL of DGAT1 and the GWAS association with
protein yield [38, 39]. In Figure 5, we present heat maps showing
the change in predicted chromatin accessibility (mean of liver
ATAC-seq tracks) due to mutations at each position, replacing
the original nucleotide with each alternative for sequences
surrounding the variant. These maps highlight the nucleotides
most crucial to a sequence’s activity. For each position, we
assign two scores: the loss score, which measures the largest
possible decrease in activity, and the gain score, which measures
the largest increase.



Variant rs133257289 14:544162
G/C| Highest population MAF: 0.06

IATTTOAGCeCTOAGGA A (ran GGGG( AGCcTTGTAGGTGTGG GGGG

Sequence-based models for farmed animals | 7

S N . R S N =
ZNF740 motif
A&LQQAGIGAAGQLCCAQ@ Cacrhccchdh.

—— gain
=== loss

-0.02
-0.01
-0.00
--0.01
--0.02

—=0.03

—0.04
—0.05

Fig. 5. In silico saturation mutagenesis experiments of rs133257289, a putative regulatory variant in cattle, which is the top colocalized SNP for the

cis-eQTL of DGAT1 and the GWAS association with protein yield.

High gain scores correspond to positions associated with the
ZNF740 motif, where mutations disrupt the motif and increase
chromatin accessibility. Notably, a G to C mutation aligns with
the observed effect size of increased gene expression in the
corresponding eQTL test in the liver ( p-value < 1.2 X 10721,
effect size = 0.3123) [38]. These findings highlight the potential
of in silico saturation mutagenesis experiments using trained
models for interpreting putative causal variants.

Functional impact scores improve genomic selection

To assess the impact of SNP selection strategies on genomic
prediction accuracy, we evaluate the predictive correlation
between observed and predicted phenotypes across various SNP
sets and genomic prediction methods (Figure 6 and Table S.4).
The SNP sets include the full 70k SNP array, the top 9,073
SNPs selected based on functional scores (both genome-wide
and within 250 kb bins), and random subsets of 9,073 SNPs

derived from the 70k array.

SNP sets

[ 70k sNPs (i array)

[ Best 9073 SNPs (per 250kb bin)
I Best 9073 SNPs (genome wide)
1 9073 random SNPs in the array

Predictive correlation

GCTA - Yang

GCTB - Bayesian
Genomic prediction method

Fig. 6. Genomic prediction performance of various SNP sets.

For the GCTA-Yang method, which assumes equal SNP
contributions, the full 70k SNP array exhibits the highest
predictive performance (correlation = 0.373), followed closely
by the functional SNP set stratified by 250 kb bins (correlation
= 0.365). SNP sets based on genome-wide functional scores
(correlation 0.358) and random subsets of the array (correlation
= 0.348 4 0.0057) show slightly lower predictive correlations. In
contrast, the GCTB-Bayesian method demonstrates improved
predictive accuracy compared to GCTA-Yang across all SNP
sets. The 70k SNP array achieves the highest predictive
correlation (mean = 0.421), with functional SNP sets (both
250 kb bin)
predictive performance (correlation = 0.404 for both SNP sets).
Random SNP subsets yield the lowest predictive correlation
under this method (correlation = 0.359 + 0.0155).

Overall, these findings highlight the potential utility of
functional scores in prioritizing SNPs for genomic prediction.

genome-wide and per showing comparable

Specifically, SNP sets derived from functional annotations
perform on par with the full array, while significantly
outperforming random SNP The
demonstrate the advantages of the GCTB-Bayesian method

over the GCTA-Yang approach, particularly in scenarios

subsets. results also

involving the maturation trait in Atlantic salmon.

Discussion

Despite its promise, the application of deep learning for
predicting the impact of genetic variants in farm animals
remains underexplored [40, 41]. This study presents four
deep learning sequence-to-function models, each trained on
diverse functional genomics data from cattle, pigs, chicken
or salmon. We demonstrate the model’s ability to learn
regulatory motifs and predict regulatory impact of non-coding
variants. By enabling more precise identification of functional

variants, these models can support more informed breeding
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decisions, ultimately contributing to sustainable improvements
in livestock productivity and resilience. This work sets a
foundation for further research and application of deep learning
in the field of animal genomics.

We tried both the DeepSEA and DanQ deep learning
architectures, settling on the Dan(@Q architecture as it
consistently returned higher AUROC scores in all species. This
difference in performance between the architectures was also
shown in the original Dan@ model that was trained on human
data [11], indicating the finding generalizes well across species.
The key difference between these architectures is the recurrent
bLSTM block used in DanQ which has the ability to learn
positional dependencies in the sequence, possibly reflecting the
nature of the regulatory grammar.

Our motif analysis highlights the biological relevance of
these models, demonstrating their ability to learn sequence
patterns corresponding to known transcription factor binding
sites. The DanQ model, with its single convolutional layer and
long filters, is particularly suited for such analyses, as these
filters effectively function as motif detectors. We identified
motifs various significant motifs in all species, underscoring
the models’ capability to capture regulatory elements even
with limited training datasets in farmed animals. However, the
reduced number of detected motifs compared to the human
Dan@ model may stem from key differences in the datasets.
The original DanQ model was trained on a comprehensive
functional data with large amount of TF ChIP-seq data making
it to learn binding motifs specific to transcription factors in
the dataset. In contrast, our models rely on broader chromatin
accessibility profiles, which may limit motif specificity. Another
factor to comnsider is the evolutionary divergence between
species transcription factors in distant species compared to
the reference database, such as salmon, may recognize motifs
distinct from those in human or mouse, further influencing
motif detection. These findings highlight the need for more
comprehensive functional annotations in non-human species,
which could enhance both motif discovery and overall model
performance.
silico

The application of in saturation mutagenesis

demonstrates the practical utility of these models in
interpreting putative causal regulatory variants. For instance,
the analysis of rs133257289 in cattle reveals specific nucleotide
changes that influence chromatin accessibility and align with
observed eQTL effects, underscoring the potential of deep
learning-based approaches for functional variant interpretation.
Such methods provide invaluable insights for identifying
candidate variants linked to economically important traits,
paving the way for more targeted breeding strategies.
Moreover, our evaluation of functional scores in predicting
eQTL causal variants in pig reveals moderate to high accuracy,
with performance varying across tissues. Closer examination
of the training data reveals that predictive performance is
generally higher in tissues represented in the training chromatin
profiles. Notably, spleen (0.7469), lung (0.6018), and liver
(0.5508) which are included in the training data—exhibit
relatively stronger performance compared to tissues such as
uterus (0.5226), testis (0.5541), and blood (0.5261), which are
absent from the training set. This suggests that the presence
of tissue-matched chromatin features, including histone
modifications, DHS, ATAC-seq, and CTCF binding profiles,
enhances the classification of putative eQTLs. Intermediate
AUROC values in some tissues may reflect partial similarity
or shared regulatory architecture with training tissues. These
findings highlight the importance of incorporating diverse,

tissue-relevant epigenomic data to improve the generalizability
and predictive power of functional variant scoring models.

Importantly, these functional scores demonstrate significant
potential for enhancing genomic selection, as evidenced by
their comparable performance to full SNP arrays and their
superiority over randomly selected subsets as demonstrated in
salmon. This finding suggests that functional annotations can
be used to prioritize SNPs for functional-aware array design
[42], thereby improving the efficiency and accuracy of genomic
prediction.

Finally, we note that class imbalance is a common
phenomenon in regulatory sequence modeling, where positive
regulatory elements are typically outnumbered by negative
examples. Our study adheres to standard practices widely
adopted in the field, including those employed by models such
as DeepSEA [10], DanQ [11], and PlantDeepSEA [27], which
train the models with standard binary cross-entropy objective
on genome-wide data. Nevertheless, a systematic investigation
into the impact of class imbalance on model performance and
solutions for improving generalization are still lacking and
would be a valuable direction for future research.

Conclusion

Overall, this study demonstrates the feasibility and utility of
deep learning-based approaches for predicting the regulatory
impact of non-coding variants in farmed species. By leveraging
functional genomic data, our models achieve high predictive
accuracy, uncover regulatory grammar, and provide actionable
insights for genomic selection. The integration of functional
annotations into breeding programs offers a promising approach
for enhancing the precision and efficiency of livestock and
aquaculture genomics. Future work should focus on expanding
functional genomics resources for farmed species and exploring
the application of these methods to other economically
important organisms.
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