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Abstract

Genome-wide association studies and polygenic score analysis rely on large-scale geno-
typic data, traditionally obtained through SNP arrays and imputation. However, low
coverage whole-genome sequencing has emerged as a promising alternative. This study
presents a comprehensive comparison of imputation accuracy and polygenic score per-
formance between eight high-performance genotyping arrays and six low coverage whole-
genome sequencing coverage levels (0.5-2x) across diverse populations. We analyze data
from 2,504 individuals in the 1000 Genomes Project using a 10-fold cross-imputation
strategy to evaluate imputation accuracy and polygenic score performance for four com-
plex traits. Our results demonstrate that low-pass whole-genome sequencing performs
competitively with population-specific arrays in both imputation accuracy and polygenic
score estimation. Interestingly, low coverage whole-genome sequencing shows superior
performances compared to arrays in underrepresented populations and for rare and low-
frequency variants. Our findings suggest that low coverage whole-genome sequencing
offers a flexible and powerful alternative to genotyping arrays for large-scale genetic

studies, particularly in diverse or underrepresented populations.
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1 Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic variants
linked to complex human traits. By 2023, more than 400,000 associations had been
reported from over 6,000 studies in humans™. Research has shown that many complex
traits exhibit a polygenic architecture, where numerous genetic variants with small effects

[2U314]

contribute to phenotypic variation . One key application of GWAS is estimating an

SI6IT8] - This predisposition is

individual’s genetic predisposition to specific phenotypes[
commonly quantified as a polygenic score (PGS), which aggregates an individual’s risk
alleles weighted by their effect sizes derived from GWAS summary statistics. With its
potential to enhance precision medicine by improving disease stratification, identifying
high-risk individuals, refining diagnoses, and predicting therapeutic outcomes, PGS has
become a rapidly growing research area TS

Both GWAS and PGS applications typically require large-scale, genome-wide geno-
typic data. With advantages such as cost-effectiveness and low computational require-

13|

ments SNP arrays followed by genotype imputation have been the dominant ap-

1405 Despite their effectiveness,

proach for obtaining genetic data in large-scale studies!
SNP arrays have several limitations. First, population-specific designs are necessary to
maximize performance®®. For instance, the UK Biobank Axiom Arrayl? Japonica
NEO Arrays®8 | Axiom KoreanChip®¥ and FinnGen array are specifically designed to
optimize imputation performance within their respective target populations. Second,
the imputation accuracy of rare variants is limited 2%, as SNP arrays typically include a
constrained set of variants. Consequently, variants with a minor allele frequency (MAF)
below 1% are often omitted during array design 21422,

With decreasing sequencing costs, low coverage whole-genome sequencing or low-pass
sequencing (LPS) has become a promising alternative to SNP arrays. Several studies
highlighted its potential, including one using 1.7x coverage that identified genetic loci

associated with major depressive disorder 23, Another study demonstrated that 1x LPS

could uncover associations missed by SNP array imputation 4. Additionally, LPS with


https://doi.org/10.1101/2025.07.18.665609
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.07.18.665609; this version posted July 22, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

0.5-1x coverage performs comparably to standard low-density arrays, while higher cov-
erage (4x) improves the detection of novel variants in underrepresented populations 1251
Moreover, LPS provides similar accuracy at a comparable cost while reducing biases
associated with SNP array design 9.

As LPS gains traction, a comprehensive comparison with genotyping arrays is essen-
tial to help researchers choose the most suitable approach for specific study objectives
and populations. While previous studies have examined LPS in relation to SNP arrays,
their scope has been limited by a narrow selection of arrays or populations RER728R530]
Here, we conduct an extensive in silico evaluation of imputation accuracy and PGS
performance across eight high-performance human genotyping arrays and six LPS cov-
erage levels ranging from 0.5-2x in diverse populations. Our analysis aims to provide

researchers with practical guidance for optimizing genotyping strategies in genetic re-

search.

2 Materials and Methods

2.1 Datasets and computational pipelines

An overview of the analytical pipeline is presented in Figure[Il In brief, we utilize both
mapped sequences in CRAM format and phased genomic data in Variant Call Format
(VCF) from 2,504 unrelated individuals in the 1000 Genomes Project dataset, which
was re-sequenced at high coverage by the New York Genome Center (1IKGPHC) Bl To
minimize noise during imputation and evaluation, we filter the VCF files to retain only bi-
allelic SNPs with an allele count > 2. We use the mapped sequences to simulate six LPS
coverages (0.5, 0.75, 1.0, 1.25, 1.5, and 2.0x) and the SNP data to generate pseudo-arrays
for eight different genotyping SNP chips. The obtained LPS and array data are then
subjected to genotype imputation using a cross-validation approach, with performance
evaluation performed by comparing the imputed data with the whole genome sequencing

(WGS) 30x data (Fig|I).
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Figure 1: Overview of the analytical pipeline. A) 10-fold cross-imputation ap-

proach; (1) 10% of the samples are downsampled (BAM files) or filtered to retain

only array variants (VCF files) to generate pseudo LPS and pseudo array data;

(2) these data are imputed using the remaining 90% of the samples as the refer-

ence panel; (3) the imputed data from all batches are combined and then split by

population; (4) performance is evaluated using high-coverage genotyping data as

the ground truth. B) Data generation and imputation pipeline for LPS and SNP

array data.
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For LPS data simulation, we choose to sample high-coverage data from the mapped
sequences rather than the raw sequencing reads, following approaches used in previous

studies 2627129]

This decision helps to avoid the high computational cost associated
with re-aligning large volumes of sequencing data. Since the mapped data has already
undergone masking of duplicated reads, we firstly adjust the target coverage values for
sampling by accounting for a 9% duplication rate, as reported in the original dataset 1311,
To make simulation reflect real sequencing procedures, which often result in LPS cover-
age levels that deviate slightly from theoretical expectations¥, we further incorporate
variability in targeted coverage into our simulation. Specifically, we sample the coverage
values from a normal distribution with a mean equal to the adjusted coverage and a
standard deviation of 0.1. To avoid extreme cases, the sampling is constrained to the
0.1-0.9 quantile range of the distribution before performing down-sampling. Addition-
ally, a minimum coverage threshold of 0.1x is applied as a pseudo-quality control step
to exclude excessively low-coverage data. Of note, this approach is different from pre-
vious studies that typically sample mapped reads to match theoretical target coverage
values P627:29]

For SNP arrays, we select eight genotyping platforms based on marker density,
population-specific optimization, and overall performance, as reported previouslypm.
These arrays include the Axiom UK Biobank Array (820k markers), Axiom JAPONICA
Array (667k markers), Axiom Precision Medicine Research Array (900k markers), Ax-
iom Precision Medicine Diversity Array (901k markers), Infinium Global Screening Array
v3.0 (648k markers), Infinium CytoSNP-850K v1.2 (2,364k markers), Infinium Omni2.5
v1.5 Array, and Infinium Omni5 v1.2 Array (4,245k markers). We use hg38-harmonized
array manifests to extract typed variants with veftools v0.1.17B2 and remove phasing
information to generate pseudo-SNP array data, following established methodologies 20

Once the simulated datasets for both LPS and SNP arrays are generated, we perform
genotype imputation using a 10-fold cross-validation framework. To ensure balanced

representation across continental groups, we stratify batch splitting so that samples are

evenly distributed across five superpopulations: East Asian (EAS), European (EUR),
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South Asian (SAS), African (AFR), and American (AMR). This results in four batches
with 251 samples and six batches with 250 samples each. In each iteration, nine batches
(90% of samples) serve as the reference panel, while the remaining batch (10% of samples)
is used as the target input in either LPS or SNP array data. For SNP arrays, we
perform phasing using SHAPEIT5 B3 followed by imputation with Minimac4 B4, For
LPS data, we conduct both phasing and imputation using GLIMPSE2E3  Finally,
imputed genotypes from all ten batches are merged by superpopulation for performance

evaluation, as detailed in the following section.

2.2 Imputation and PGS performance assessment

Imputation increases the number of SNPs available for association testing, which is
critical for GWAS, while for PGS, accurate imputation is essential since scores are derived
by summing the product of risk allele counts (0, 1, or 2) and their estimated effect
sizes. As a result, the accuracy of imputation is pivotal for statistical power B6 and

20137128

the reliability of PGS predictions. In line with previous studies , we prioritize

the use of the SNP-wise imputation r? metric for several key reasons: (1) its direct
relevance to both GWAS and PGS performance at individual variant levels B35E%4028]
(2) its ability to account for imputation uncertainty by utilizing expected allele dosages
instead of relying solely on the most probable genotypes ! (3) its reduced sensitivity
to allele frequency compared to concordance-based metrics g making it better suited
for assessing rare variants.

We use genotypes from WGS 30x datasets as the golden standard to evaluate im-
putation performance. Imputation accuracy is measured by calculating the SNP-wise
squared Pearson correlation (r?) between the imputed dosages and WGS genotypes. For
imputation coverage, a variant is defined to be covered if the r? value for this vari-
ant is above or equal to 0.8. We focus on evaluating performance of SNPs with MAF
belong to the range of (0.01-0.5] that is the commonly used threshold in GWAS and

B2

PGS analyses In addition, we also categorize these metrics into three MAF bins
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(0 —0.01], (0.01 — 0.05], and (0.05 — 0.5] to assess imputation performance in various
allele frequencies.

Regarding PGS performance assessment, we use the same method described previ-
ously 2% that compute PGS scores using a standard P+T (Pruning and Thresholding)

ze]

approach implemented in PRSice-2 Compared to the use of pre-tuned PGS mod-

28H4]  this approach better reflects real-world PGS analysis, which involves testing

els
multiple parameter settings to identify the optimal model®. Additionally, it avoids po-
tential bias associated with pre-built PGS models, which may be over-fitted to specific
arrays used during model training 2%,

Prior to PGS computation, we follow quality control procedures as recommended in
the protocol for PGS analysis by Choi et al®. Using summary statistics from previous
GWAS meta-analyses for body mass index (BMI), height B3l type 2 diabetes®8 and

M7

metabolic syndrome®9. we calculate the PGS for each individual ¢ as follows:

M
PGS;(Pr) = Z 1(p, <pr)%ij B (1)
i=1

where Pr represents various p-value threshold; M is the number of SNPs after clump-

ing; x;; is the allele count, and Bj is the estimated effect size of SN P;.

3 Results

3.1 Imputation performance

We measure imputation performance using two metrics: (1) imputation accuracy, de-
fined as the mean 72 of sites within the bin, and (2) imputation coverage, defined as
the proportion of variants with 2 > 0.8 over the total number of variants within the
bin. These metrics are computed by chromosome basis for all autosome. The result
visualizations are presented in Figure 2| and Figure

In the most widely used MAF bin, (0.01 — 0.5], imputation performance strongly de-

pends on array density and sequencing coverage, with additional variation attributable
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Figure 2: Imputation accuracy (mean r?) across 22 autosomes for eight genotyping
arrays and six LPS coverages, evaluated across five populations for various MAF

bins: (0 — 0.01], (0.01 — 0.05], (0.05 — 0.5], and (0.01 — 0.5]. The red dashed line

represents the performance of the GSA %rray.
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Figure 3: Imputation coverage across 22 autosomes for eight genotyping arrays
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Table 1: Imputation accuracy (mean and standard deviation across 22 autosomes)

for eight genotyping arrays and six LPS coverages, evaluated across five popula-

tions for variant with allel frequency (0.01 — 0.5].

Array/LPS  AFR AMR EAS EUR SAS

GSA 0.763 £ 0.047 0.863 £ 0.037 0.816 £ 0.042 0.870 £ 0.038 0.823 £ 0.040
JAPONICA 0.806 £+ 0.038 0.882 £+ 0.030 0.873 £ 0.032 0.873 £ 0.031 0.853 = 0.032
UKB_.WCSG 0.796 + 0.033 0.896 £+ 0.028 0.831 £ 0.031 0.912 £ 0.029 0.865 = 0.029
CYTOSNP  0.860 &+ 0.039 0.896 £ 0.032 0.848 £+ 0.037 0.886 £ 0.033 0.863 £ 0.035
PMRA 0.853 £ 0.031 0.891 £ 0.029 0.854 £ 0.033 0.882 £+ 0.031 0.848 £ 0.030
PMDA 0.869 + 0.023 0.906 + 0.020 0.843 £ 0.021 0.900 £ 0.021 0.864 £ 0.022
OMNI2.5 0.915 £ 0.033 0.926 & 0.029 0.888 £+ 0.033 0.921 £ 0.030 0.901 £ 0.031
OMNI5 0.927 £ 0.030 0.944 £ 0.026 0.902 &£ 0.029 0.948 +£ 0.026 0.921 £ 0.027
LPS.0.5 0.913 £ 0.039 0.918 & 0.037 0.883 4+ 0.040 0.909 &+ 0.039 0.897 £ 0.038
LPS_0.75 0.923 £ 0.039 0.927 £ 0.038 0.899 £ 0.040 0.920 + 0.039 0.910 £ 0.038
LPS_1.0 0.932 £ 0.038 0.934 £ 0.037 0.910 £ 0.039 0.929 £ 0.038 0.920 £ 0.037
LPS_1.25 0.937 £ 0.037 0.939 £ 0.035 0.918 £ 0.038 0.934 + 0.037 0.927 £ 0.036
LPS_1.5 0.940 £ 0.035 0.942 £ 0.034 0.924 £ 0.036 0.939 &+ 0.035 0.931 £ 0.035
LPS_2.0 0.946 £ 0.034 0.948 £ 0.032 0.932 £ 0.035 0.944 + 0.034 0.938 £ 0.033
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Table 2: Imputation coverage (mean and standard deviation across 22 autosomes)

for eight genotyping arrays and six LPS coverages, evaluated across five popula-

tions for variant with allel frequency (0.01 — 0.5].

Array/LPS  AFR AMR EAS EUR SAS

GSA 0.567 £ 0.076 0.799 £ 0.054 0.735 £ 0.053 0.814 £ 0.052 0.731 £ 0.054
JAPONICA  0.668 £ 0.062 0.827 £ 0.042 0.826 = 0.039 0.809 £ 0.040 0.780 % 0.041
UKB_.WCSG 0.633 £ 0.046 0.861 £ 0.034 0.764 + 0.035 0.892 £ 0.034 0.808 £ 0.034
CYTOSNP  0.790 &+ 0.057 0.848 £ 0.040 0.783 £+ 0.042 0.828 £ 0.040 0.794 £ 0.042
PMRA 0.780 £ 0.040 0.850 £ 0.035 0.803 £ 0.037 0.834 £ 0.037 0.780 £ 0.036
PMDA 0.822 £ 0.029 0.879 £ 0.022 0.782 £ 0.025 0.862 £+ 0.024 0.803 £ 0.028
OMNI2.5 0.898 + 0.040 0.900 £+ 0.034 0.838 &£ 0.036 0.887 £+ 0.035 0.854 £ 0.035
OMNI5 0.914 £ 0.036 0.929 £ 0.030 0.856 &+ 0.032 0.936 &+ 0.031 0.887 £ 0.032
LPS.0.5 0.898 + 0.058 0.890 4+ 0.055 0.822 4+ 0.056 0.872 4+ 0.056 0.848 £ 0.056
LPS_0.75 0.914 £ 0.056 0.905 £ 0.054 0.848 £ 0.055 0.892 + 0.055 0.872 £ 0.055
LPS_1.0 0.923 £ 0.054 0.915 £ 0.053 0.868 £ 0.055 0.907 + 0.054 0.889 £ 0.054
LPS_1.25 0.929 +£ 0.053 0.922 £ 0.051 0.883 £ 0.053 0.916 £+ 0.052 0.901 £ 0.052
LPS_1.5 0.933 £ 0.050 0.928 £ 0.048 0.895 £+ 0.048 0.924 £+ 0.048 0.910 £ 0.049
LPS_2.0 0.941 £ 0.041 0.937 £ 0.041 0.913 £ 0.042 0.935 £ 0.040 0.925 £ 0.040
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to population-specific optimizations for SNP arrays. As shown in Table [I] and Table 2]
arrays such as GSA and sequencing at low coverage (e.g., LPS 0.5X) exhibit lower impu-
tation accuracy across populations, while high-density arrays like OMNI5 and higher se-
quencing coverages (e.g., LPS 2.0X) consistently perform well across diverse populations.
The performance of certain SNP arrays is also tailored to specific genetic backgrounds.
For example, the UKB_WCSG array achieves favorable imputation performance in the
EUR population (0.912 for accuracy and 0.892 for coverage), but performs less effectively
in other populations such as EAS (0.831 for accuracy and 0.764 for coverage) and SAS
(0.865 for accuracy and 0.808 for coverage). Similarly, the JAPONICA array demon-
strates superior performance in the EAS population (0.873 for accuracy and 0.826 for
coverage), outperforming other arrays of similar density, such as GSA (0.816 for accuracy
and 0.735 for coverage) and UKB_WCSG (0.831 for accuracy and 0.764 for coverage).
These results are expected due to the population-specific design of these arrays, with
the UKB_WCSG array optimized for European genetic variation through its develop-
ment using cohorts such as the UK Biobank, while the JAPONICA array is tailored
to capture Japanese genetic diversity that closely related to the EAS population. This
observation is consistent with a previous evaluation of human genotyping arrays2d. In
contrast, the performance of LPS exhibits much less variation across populations. For
example, at 0.5X coverage, imputation accuracy is 0.913, 0.918, 0.883, 0.909, and 0.897;
and imputation coverage is 0.898, 0.890, 0.822, 0.872, and 0.848 for AFR, AMR, EAS,
EUR, and SAS, respectively. Higher sequencing coverage improves imputation accuracy
across all populations. For instance, LPS 2.0X achieves an average imputation accuracy
of 0.946 in AFR populations compared to 0.913 for LPS 0.5X, highlighting the benefit of
deeper sequencing. Similarly, in EUR populations, imputation accuracy increases from
0.909 at LPS 0.5X to 0.944 at LPS 2.0X. This trend is consistent across other popula-
tions, reinforcing the advantage of higher sequencing coverage in enhancing imputation
accuracy.

In terms of performance stratified by MAF, LPS-based genotyping achieves signifi-

cantly higher performance in both mean r? and coverage for rare variants (MAF < 0.01)
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(Supplemental Tables S1,54) and low MAF variants (MAF range (0.01 — 0.05]) (Sup-
plemental Tables S2,S5) compared to SNP arrays. However, for common variants, both
approaches exhibit high accuracy (Supplemental Tables S3,56). The performance of
LPS-based genotyping is also more stable across populations, with differences becoming
negligible when an optimized array for each population is used.

For the rare variant bin, the GSA array consistently demonstrates low performance
across five populations, with imputation accuracy ranging from 0.321 to 0.629 and impu-
tation coverage ranging from 0.168 to 0.489 for EAS and AMR, respectively. In contrast,
even at the lowest sequencing depth tested (0.5X), LPS-based genotyping achieves im-
putation accuracy between 0.492 and 0.785 and imputation coverage between 0.314 and
0.705 across the corresponding populations. This performance surpasses most tested
arrays, except for OMNI5, which achieves slightly better performance, with imputation
accuracy and coverage ranging from 0.461 to 0.800 and 0.319 to 0.734, respectively.
LPS with higher coverage generally outperforms all tested arrays for both metrics, as
summarized in Table S1 and Table S4.

A similar trend is observed in the low MAF bin ((0.01 —0.05]), as shown in Table S2
and Table S5. LPS continues to outperform SNP arrays in both mean r? and imputa-
tion coverage across all five populations, though higher sequencing depth is required to
surpass all SNP arrays completely. For example, at 1X sequencing depth, LPS achieves
mean 72 values ranging from 0.813 to 0.904 and imputation coverage ranging from 0.699
to 0.892. Notably, the OMNI5 array performs competitively, with mean r? values be-
tween 0.754 and 0.900 and coverage values between 0.618 and 0.870, but LPS generally
surpasses it at higher depths.

For common variants (MAF > 0.05), both genotyping approaches achieve very high
performance, as detailed in Table S3 and Table S6. However, LPS performance is more
stable across populations, consistently exceeding 0.9, whereas SNP array performance
varies substantially across populations. Additionally, LPS-based genotyping exhibits
lower standard deviation across chromosomes, indicating higher robustness. These re-

sults highlight the superiority of LPS for low MAF variants, particularly as sequencing
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depth increases, with substantial improvements in both accuracy and coverage compared

to SNP arrays across all populations.

3.2 PGS performance

We evaluate PGS performance of LPS and genotyping arrays by adopting two metrics: (i)
Pearson’s correlation between PGS derived from imputed SNP array data and PGS from
WGS, referred to as PGS correlation, and (ii) the absolute difference in percentile ranking
(ADPR) between PGS from array-imputed data and the gold standard WGS. These
assessments are conducted across multiple p-value thresholds to ensure an unbiased
comparison2¥. The evaluation is performed in four phenotypes including BMI, height,
type 2 diabetes, and metabolic syndrome. Overall, PGS performance closely reflects
imputation accuracy, with arrays and LPS designs that achieve better imputation results
showing higher PGS correlation and lower ADPR than those with lower imputation

quality.

3.2.1 PGS correlation

The summary results of PGS correlations for four different phenotypes are presented
in Figure {4 and Tables S.7-10. Overall, both genotyping arrays and LPS approaches
demonstrate high PGS correlations across all populations and phenotypes, with most
correlations ranging from 0.95 to 0.99.

Among the genotyping arrays, dense arrays such as OMNI2.5 and OMNI5 consis-
tently outperforms other arrays across all populations and traits. For instance, OMNI5
achieves correlations of 0.996 for height in AFR, 0.998 for BMI in AMR, 0.995 for di-
abetes in EAS, and 0.999 for metabolic traits in EUR. These results demonstrate the
robustness and high performance of the high density arrays across diverse populations
and complex traits. In contrast, GSA generally shows lower correlations due to its low
density, particularly in the AFR population. For height, GSA achieves a correlation

of 0.947 in AFR, which is the lowest among all arrays and populations. However, its
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Figure 4: Correlations between PGS from imputed genotyping data (arrays and
LPS) and PGS from WGS across five populations for four phenotypes (height,
BMI, type 2 diabetes, and metabolic syndrome) at multiple PRSice p-value thresh-
olds (5e-08 to 1). The red dashed line inil(ijcates the performance of the GSA array.
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performance improves in other populations, with correlations of 0.983 in AMR, 0.986 in
EUR, and 0.972 in SAS populations for height.

Population-specific arrays demonstrate superior performance in their target popu-
lations. UKB_WCSG excels in the EUR population, achieving correlations of 0.995
for height, 0.992 for BMI, 0.992 for diabetes, and 0.992 for metabolic traits. Simi-
larly, JAPONICA performs well in the EAS population, with correlations of 0.984 for
height, 0.983 for BMI, 0.984 for diabetes, and 0.984 for metabolic traits. In addition,
the CYTOSNP array demonstrates remarkable consistency across all populations and
traits regardless its moderate density. For example, in the height phenotype, CYTOSNP
achieves correlations of 0.983 in AFR, 0.993 in AMR, 0.988 in EAS, 0.994 in EUR, and
0.990 in SAS populations. This consistency is maintained across other traits as well,
suggesting CYTOSNP a reliable choice for PGS analysis in diverse population studies.

Regarding the LPS approaches, a clear trend of increasing PGS correlation with
higher sequencing depth is observed across all populations and traits. LPS_2.0 consis-
tently outperforms lower coverage options and serveral genotyping arrays. For instance,
in the height phenotype, LPS_2.0 achieves correlations of 0.992 in AFR, 0.995 in AMR,
0.990 in EAS, 0.996 in EUR, and 0.993 in SAS populations.

Comparing LPS approaches to genotyping arrays, we observe that LPS_1.0 and
higher obtain competitive well to most of the arrays, except for OMNI5 and OMNI2.5.
For example, in the BMI trait for the AFR population, LPS_1.0 achieves a correlation of
0.990, which is higher than GSA (0.953), JAPONICA (0.964), and UKB_-WCSG (0.961),
but slightly lower than CYTOSNP (0.984) and OMNI5 (0.997). Interestingly, the relative
performance of LPS approaches compared to arrays varies across traits and populations.
In the EAS population, LPS options show particularly strong performance relative to
arrays for the metabolic trait. LPS_1.0 achieves a correlation of 0.986, outperforming
GSA (0.959), PMRA (0.969), and PMDA (0.970), and matching the performance of
population-specific arrays like JAPONICA (0.984). In the AFR population, which often
shows lower imputation accuracy due to higher genetic diversity, LPS approaches demon-

strate notable improvements over some arrays. For the height trait, LPS_1.0 achieves a
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correlation of 0.987, outperforming GSA (0.947), JAPONICA (0.961), and UKB-WCSG
(0.956). This highlights the potential of LPS to capture population-specific variants
that may be missed by some arrays, particularly in the context of diverse population or

under-presentative populations.

3.2.2 Absolute difference in percentile ranking

Regarding the ADPR metric, the performance of arrays and LPS aligns with the trends
observed in PGS correlations, reflecting variations by array sizes, optimization popula-
tions, and LPS coverage. ADPR measurements across different PRSice-2 p-value settings
are presented in Figure 5] and Figures S.1-11, with detailed results reported in Tables
S.11-22. In general, ADPR values vary by traits and are slightly affected by cutoffs; how-
ever, most arrays and LPS coverages yield mean ADPRs around or below 5 across all
four traits. Notably, ADPR values differ significantly between populations, with under-
represented populations such as AFR and EAS exhibiting higher ADPRs compared to
others.

For instance, at a p-value cutoff of 1e-5 for the height phenotype (Figure , OMNI5
achieves ADPR means of 1.936, 1.268, 1.768, 1.043, and 1.580 in AFR, AMR, EAS, EUR,
and SAS populations, respectively. A consistent trend is observed across other traits,
where OMNI5 consistently demonstrates the lowest ADPR values among all arrays. For
BMI, OMNI5 achieves ADPR means of 1.791 in AFR and 1.087 in EUR—the highest and
lowest-performing populations for this trait, respectively. Similarly, for type 2 diabetes,
OMNI5 achieves ADPR means of 1.928 in AFR and 0.929 in EUR. For metabolic traits,
OMNI5 shows strong performance with ADPR means of 1.790 in AFR and 1.098 in
EUR. Population-specific arrays also illustrate their advantages when comparing the
ADPR metric. The UKB_WCSG array performs particularly well for EUR populations
with ADPR means of 2.365 for height, 2.564 for BMI, and 2.421 for type 2 diabetes.
Similarly, the JAPONICA array demonstrates strong performance for EAS populations
with ADPR means of 3.933 for height, 3.538 for BMI, and 3.647 for type 2 diabetes.

LPS approaches also show competitive or superior performance compared to arrays
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Figure 5: Absolute difference in percentile ranking between PGS from imputed
genotyping data (arrays and LPS), and WGS across five populations for four phe-
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across multiple traits and populations as LPS coverage increases. For height at a p-
value cutoff of le-5, LPS_0.5 achieves ADPR means of 4.398 in AFR and 3.348 in EUR;
however, at higher coverage (LPS_2.0), these values decrease significantly to 2.858 in
AFR and 2.161 in EUR—highlighting the improvement associated with increased se-
quencing depth. Similar trends are observed for BMI and type 2 diabetes traits with
LPS approaches outperforming several arrays at higher coverage levels while maintain-
ing competitive performance at lower coverage levels such as LPS_0.5 or LPS_0.75. For
instance, for BMI in AFR populations, LPS_2.0 achieves an ADPR mean of 2.328 com-
pared to GSA’s mean of 6.707 and JAPONICA’s mean of 5.857.

These results highlight the potential of LPS as a cost-effective alternative to geno-
typing arrays, particularly at coverages of 1.0x and above. The flexibility of LPS in
capturing population-specific variants may contribute to its strong performance across
diverse populations and traits, making it an attractive option for large-scale genetic
studies and biobank initiatives, especially in populations with limited representation in

existing genotyping arrays.

4 Discussion

This study provides a comprehensive evaluation of imputation accuracy and PGS perfor-
mance across eight genotyping arrays and six LPS coverage levels in diverse populations.
Our findings demonstrate that LPS, particularly at coverage levels of 1x or higher, offers
significant advantages over traditional SNP arrays in capturing rare variants and main-
taining consistent performance across diverse populations. One key observation is the
superior imputation accuracy of LPS compared to most genotyping arrays, particularly
for rare (MAF < 0.01) and low-frequency variants (0.01 < MAF < 0.05). Rare vari-
ants are often omitted from SNP array designs due to their low minor allele frequency,
limiting their utility in genetic studies focused on complex traits or diseases with rare
variant contributions. LPS addresses this limitation by providing broader genomic cov-

erage, enabling more accurate imputation of rare variants across all studied populations.
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The consistency of LPS performance across diverse populations is another notable ad-
vantage. While population-specific arrays such as UKB_-WCSG and JAPONICA excel
within their target populations (EUR and EAS, respectively), their performance dimin-
ishes in other populations due to differences in genetic architecture 2. In contrast, LPS
exhibits less variation across populations, making it an attractive option for multi-ethnic
studies where inclusivity is paramount. This consistency is particularly evident in un-
derrepresented populations such as AFR, where higher genetic diversity often reduces
the effectiveness of SNP arrays.

The evaluation of PGS performance further supports the competitiveness of LPS
compared to genotyping arrays that align with previous studies 282829 Using both
Pearson correlation with WGS-derived PGS and absolute difference in percentile rank-
ing metrics, we observed that LPS achieves comparable or superior PGS performance
at 1x coverage or higher across diverse traits such as BMI, height, type 2 diabetes,
and metabolic syndrome. Notably, the advantage of LPS becomes more pronounced
as sequencing depth increases, with 2x coverage consistently outperforming most tested
arrays.

Despite these advantages, high-density arrays such as OMNIS5 remain competitive for
certain applications due to their high marker density and optimized designs for common
variants. For researchers prioritizing on well-represented populations with established
array designs, these arrays may still be suitable alternatives.

A limitation of this study is the use of simulated LPS data derived from high-coverage
sequencing rather than real-world LPS datasets. While this approach enable the possible
of large scale evaluation, it may not account for possible differences between sequencing

28] - Additionally, expanding the analysis to include additional

protocol and platforms!
traits beyond those evaluated here would provide deeper insights into the relative merits
of LPS versus SNP arrays.

In summary, our results highlight the flexibility and scalability of LPS as a genotyp-

ing approach for large-scale genetic studies. By achieving superior imputation accuracy

for rare variants and maintaining consistent performance across diverse populations, LPS
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addresses key limitations associated with array-based genotyping approaches. Further-
more, its competitive PGS performance across multiple traits underscores its potential
utility in both research and clinical applications. As sequencing costs continue to de-
cline, LPS is poised to become an indispensable tool for genetic studies aiming to improve

population inclusivity and uncover novel genetic associations.
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